Introduction
Chronic disease is defined as long-lasting illness that has a persistent effect on health and quality of life (QoL).1 The WHO estimates that, worldwide, 38 million people die every year because of a non-communicable disease and this number is expected to increase to 52 million people by 2030.2 Coincident with this increase, there has been a global increase in the prevalence of chronic health conditions among children and adolescents. For example, between 1988 and 2006, the prevalence of chronic disease among children and youth in the USA increased from 12.6% to 26.6%,3 and it is estimated that by 2020, non-communicable disease will be one of the leading causes of illness, disability and death among young people.4 In Australia, just over 66% of children and adolescents aged 15 years or younger suffer from a chronic health condition.5 Chronic disease is associated with ill health, disability and death and with significant personal, social and economic impacts.1
One of the major groups of chronic health conditions in children and adolescents is respiratory disease. Chronic respiratory diseases are a diverse group of disorders affecting the lungs and respiratory system.6 7 In children, these conditions include asthma, cystic fibrosis (CF), bronchiectasis, consequences of chronic neonatal lung disease or bronchopulmonary dysplasia (BPD), sleep apnoea and interstitial lung disease.1 8 Asthma, a heterogeneous condition consisting of reversible airway obstruction, airway inflammation and increased airway responsiveness, is the most common respiratory disease, affecting approximately 16 million children worldwide.6 7 9 CF is an autosomal recessive disease and is the most common inherited life-limiting illness in children. For 95% people with CF, the cause of mortality will be respiratory failure.6 Bronchiectasis is characterised by irreversible dilatation of one or more bronchi and decreased lung function10 and is a major contributor to respiratory morbidity, especially among socially and economically disadvantaged groups. Worldwide, there are more people with bronchiectasis than CF.6 11 The modern and the most widely used definition defines BPD as oxygen dependence at 36 weeks of postmenstrual age (gestational age plus chronological age). It is related to damage of the undeveloped lung tissues of babies born prematurely. Children with BPD as infants have a greater risk of respiratory symptoms such as coughing, wheezing and asthma than children who did not suffer from BPD after birth.12 13 These respiratory conditions are associated with poorer QoL, lung function and exercise tolerance.
Among healthy children, there is consistent evidence that exercise confers numerous health benefits such as improved cardiovascular fitness, musculoskeletal health, mental health and elements of cardiometabolic risk factors such as reduced adiposity, blood lipids, blood sugar levels and blood pressure.14 15 Among children with respiratory disease, a burgeoning evidence base suggests that regular exercise improves cardiovascular fitness and QoL.16 Nevertheless, the type, frequency, intensity and duration of exercise required for health benefits remains understudied and poorly understood.
To date, a number of systematic reviews have examined the effects of exercise training in children with asthma or CF.17–21 Their results indicate that exercise training improves cardiovascular fitness; however, there was no consensus on the effects of exercise on lung function or QoL. Two recently published Cochrane reviews have examined the effects of physical training in people with CF22 or asthma,23 but these reviews combined studies involving both children and adults. In a meta-analysis of exercise training studies involving asthmatic children,17 swimming training was found to have a positive effect on lung function, with significant changes in forced expiratory volume in one second (FEV1) and forced expiratory flow. Two other reviews in children with asthma concluded that exercise training had a positive impact on peak expiratory flow (PEF) but no effect on FEV1.18 19 A review of exercise training in children with CF on lung function outcomes concluded that exercise improves survival by reducing the rate of decline in lung function.21
While these reviews have contributed to our understanding of health benefits of exercise training in children with respiratory disease, important gaps in knowledge remain. First, previous reviews focused on children have only investigated the effects of exercise training in patients with asthma or CF. To our knowledge, no systematic or narrative review has sought to determine the effects of exercise training in children with other respiratory conditions such as bronchiectasis or BPD. Second, previous reviews have focused on a single respiratory condition and not compared the effects of exercise training in different patient groups. Consequently, it is unknown if the effects of exercise are specific to a given respiratory condition or whether it is possible to formulate a single evidence-based exercise guideline for children with respiratory disease. Last but not least, only one of the aforementioned systematic reviews conducted a meta-analysis focused exclusively on paediatric studies.17 Combining data from multiple studies can provide a more accurate estimate of the true effects of an intervention,24 and in doing so, gain a better understanding of health impacts of exercise training in children with respiratory disease.
To address these gaps, our aim was to undertake a systematic review and meta-analysis of studies to evaluate the effects of exercise training on cardiovascular fitness, lung function and QoL in children with respiratory disease related to asthma, CF, bronchiectasis or BPD.