Discussion
The purpose of this review was to determine the effect of VAF in the rehabilitation and prevention of musculoskeletal dysfunctions in the lower limbs, as well as to determine its effect on the different motor learning stages; acquisition, retention and transfer. Five out of six studies reported statistically significant effects for VAF. With evidence of moderate quality from five out of six studies, VAF was found to be effective for improving ground reaction force and lower extremity biomechanics (acquisition and retention) and postural control (transfer), which are all crucial factors in rehabilitation and prevention of injuries. Four out of the six studies did not include a control group22–25 and cannot support VAF over any other intervention or no intervention.
Caution should be made in interpreting this evidence given all studies were classed as unclear risk of bias (figure 1 and table 3) and the evidence indicates a low statistical credibility (table 5). Notwithstanding this, the overall body of evidence was deemed of a moderate quality (table 4), which means that further research can alter the estimated effect and beliefs about the strength of the evidence.15
Effect of VAF (EFA vs IFA) for MSK injury
In the study by Gokeler et al,28 both landing strategy and jump distance were measured. In terms of the former, the IFA group’s landing strategy was assessed as stiffer compared with the EFA group. Theoretically, this can lead to the risk of developing an ACL injury.22 Therefore, in this case, VAF with an EFA may be beneficial for anterior cruciate ligament injury prevention and motor learning achievement. For jump distance, there were no statistical effects. Gokeler et al28 suggest that an extra stimulus could be necessary to achieve a significant effect for jump distance. Additionally, a different wording of VAF, for example, instructing the participant to reach as well as jump, can improve the effect of motor learning.22
Laufer et al23 and Rotem-Lehrer and Laufer25 looked at postural control. They both found optimistic results for EFA as way of providing VAF in the rehabilitation of musculoskeletal dysfunctions, as postural control enhancement is crucial for secondary prevention of lateral ankle sprains.23 25
Effect of VAF versus IF for MSK injury prevention (healthy participants only)
Healthy participants in the study by Prapavessis and McNair24 demonstrated motor learning achievement in terms of reduced ground reaction force after receiving VAF. A lower ground reaction force improves landing biomechanics and can in turn prevent injuries if kept doing the same way in practice. However, the investigators only looked at the stage of acquisition, and a relatively permanent change (ie, motor learning) was not confirmed. Additionally, an investigation of injured participants is required to be able to confirm the effect for (secondary) injury prevention.
Effect of VAF versus control for MSK injury prevention (healthy participants only)
Benjaminse et al29 did not find positive effects in the VAF group (with IFA) regarding lower extremity biomechanics, compared with the visual feedback group (with EFA) and control group. This may suggest that EFA is better than IFA and supports previous findings stated in the Introduction.9 Weilbrenner26 cannot support the use of VAF with external focus of attention for primary ACL injury prevention in individuals who have not sustained a previous anterior cruciate ligament injury. This study did however differ from all the other studies in that the VAF did not include suggestions as to how to use the body during the test (instead used a metaphor—‘as light as a feather’). This may suggest that a mental imagery could prove less effective as feedback during exercise compared with actual verbal feedback.
Motor learning: stages and achievement
Acquisition is key to motor learning; however, retention and transfer are even more important in order to prevent injuries. The ability to show satisfactory results in retention and transfer tests is important considering the new tasks and challenges concerned with returning to play.29 Retention is the patient’s ability to show skill achievement or improvement of the same task some time after the acquisition phase, without having practised it.30 Transfer, on the other hand, requires additional skills where the patient has to demonstrate motor learning in a different, yet similar task.5 30 A skill is therefore not considered as fully learnt before the patient can show successful results in retention and transfer tests. It is important to bear in mind though that these tests do not always give us straightforward conclusions owing to factors such as temporary fatigue or anxiety.30
Only one study tested transfer, the rest of the studies assessed solely acquisition and retention (three) or acquisition alone (two). In view of the two studies testing short-term effects (acquisition and retention),3 24 an answer to whether a motor learning achievement was present cannot truly be obtained without a transfer test, as learning only occurs if the participants can show relatively permanent changes.5 31 However, the question then becomes, how long does it take before a change can be reasonably considered as long-term? The longest follow-up was 4 weeks. Prapavessis and McNair24 suggest that a longer follow-up, such as a year, could provide more realistic results. It might however depend on the intensity and frequency of the exercise, as to how long an effect is expected to last.
Analysis in relation to existing evidence
Regarding the first objective, the present review supports previous findings stating that there is a lack of quantity and quality of current evidence for VAF and musculoskeletal dysfunctions,12 13 and it is therefore not possible to determine whether VAF is effective. In terms of focus of attention, the results from three of the included papers22 23 25 support previous evidence that VAF with EFA is more effective than VAF with IFA.9 12 32 They all confirmed statistically significant results regarding EFA and VAF, but conclusions should be taken with caution owing to an overall moderate quality of evidence.
Strengths and limitations
The review used a thorough literature search in eight databases, inclusion and exclusion criteria were developed a priori and the protocol was registered. The review is written in line with PRISMA, and GRADE was used to determine the overall quality of the synthesised results.
Only six studies were identified for inclusion and in order to involve a sufficient number of studies, studies of injury prevention were included. Owing to the heterogeneity of the studies, a meta-analysis was not appropriate.
Moreover, it should be noted that the protocols differed between the studies and showed a wide variation with respect to sample, intervention, outcome measure, gender, time for practice, warm-up and rest. Rest might influence performance in terms of preparing the body for exercise and to prevent fatigue.26 Time postmusculoskeletal injury differed among studies (table 2), and both novice and experienced sporting participants were included. This means that pain scores, balance and skills will vary between the subjects—factors that may influence the level of motor learning achievement. Another factor to consider is the participants’ age and gender. All six studies included relatively young subjects, usually adolescents and both males and/or females. It is said that females have a higher risk of developing injury in puberty, and testing females at this age is important for injury prevention. However, transferring these results to the management of males or adults/elderly may not be possible.
Clinical and research implications
Based on the above findings, it is still unclear whether physiotherapists can fully trust current evidence in terms of providing VAF in a clinical context with respect to musculoskeletal injuries in the lower limbs. The systematic review has detected inconsistencies with the use of VAF in published studies. Furthermore, examination of healthy participants is not sufficient to demonstrate whether VAF is effective in the rehabilitation of musculoskeletal dysfunctions. To provide more clinical relevance, future studies are recommended to test individuals suffering from a musculoskeletal injury. Further use of reporting guidelines for research publications may enhance the quality of the evidence base by ensuring a robust methodological process is used with transparent designs and methods.
To determine best practices, it would be relevant to look at other aspects of VAF delivery, such as timing and frequency of all three fundamental stages of motor learning: acquisition, retention and transfer. Looking at the current systematic review, transfer was assessed 48 hours after the acquisition phase, and retention was tested 4 weeks (no feedback provided) or 48 hours23 26 postacquisition stage. (Feedback was provided in the latter study). In studies looking at the stroke population and the group of healthy participants, i there is a wide variation in terms of timing of retention and transfer tests following acquisition phase: 1 day, 2 days, 3 days, 1 week, 4 weeks and 7 weeks.32–36 One study defined two types of retention tests: immediate retention (5 min) or delayed retention (next day).37
In light of the heterogeneity of evidence, recommendations cannot be made regarding timing of retention and transfer tests postacquisition stage. It does however seem like a minimum of 24 hours postacquisition stage should be a requirement for retention and transfer tests. In addition, several studies agree on the fact that no feedback in these tests should be provided. One thing is clear; there is a need for the development of a standard by which these tests must be conducted. In terms of the interventions chosen, they should be in line with the Medical Research Council Framework for Complex Interventions.38 Ultimately, we need the interventions to bring out meaningful long-term outcomes such as return to play or reduced prevalence of injury—to provide physiotherapists with confidence within the evidence based clinical practice.