Discussion
For comparison with a rehabilitation programme for atrophied lower leg muscles, healthy volunteers of different ages were invited to participate in a similar training regime. Although some groups showed significant increases in measures of muscle strength, these were smaller than those in the rehabilitation programme, were not consistent with age and sex and were poorly reflected in MRI measures of muscle size and composition. Changes in muscle ACSA were nearly all not significant, young males being the exception, and no changes were found in pennation angle or water contents (data not shown).
In plantarflexion, all the groups showed an increase in strength over the 8-week period. In males, the average increase changed little with age, although because the variability decreased, the SRM increased. The young and the elderly females showed a greater average responsiveness than the males with an SRM greater than that of the males. However, the females lost this advantage in the middle-aged group. In dorsiflexion, the results are more varied as the middle-aged females and the elderly males did not gain strength over the study period and the young females had a smaller SRM than the other groups.
Small group sizes and large variations meant that differences in baseline strength were not significant between age groups. Individuals were selected randomly and likely reflect the heterogeneity of the general population, but this meant there was a large overlap in strength between groups; for example, one 81-year-old male in the elderly group was apparently stronger than a 56-year-old male in the middle-aged group. This may be an example where biological age is not wholly reflected in calendar age.
Exercise training was done at relatively slow angular velocities. Pilot experiments showed these slow velocities were better suited for exercising lower leg muscles predominated by slow-contracting type 1 fibres compared with 180° s−1, which was used in strength training of quadriceps containing equal proportions of type 1 and type 2 fibres.14 15
MRI has the potential to be an imaging biomarker as it is sensitive to tissue composition as well as providing excellent soft tissue contrast. The increase in baseline T2 with age could reflect changes in fibre composition as we found no measurable change in MRI measures of fat content (data not shown). Interestingly, the responsiveness of T2 to strenuous exercise also increased slightly with age. The increase in measured T2 is most likely due to an increase in oedema secondary to an intense rise in blood flow induced by exercise, although it could also be affected by a slower decay of T2 values back to baseline while the volunteer clambers back into the scanner. There is some evidence that people who are sedentary with fattier muscles have longer recovery times.16 The minimal T2 change seen immediately following exercise in TA may suggest we were not as successful at exercising TA compared with SOL and GML.
Studies of muscle function in volunteers are very demanding, often requiring prolonged periods of immobilisation or consistent attendance for training and assessment. In our previous study of rehabilitation using strength training,4 we reported a torque increment equivalent to 7.70 N m week-1 in males and 5.2 N m week-1 in females in plantarflexion and in dorsiflexion, 2.5 N m week-1 in males and 1.6 N m week-1 in females. The males in that study were predominantly young (average age 31 years), whereas the females were closer to middle aged (average age 53 years). In both corresponding age/sex groups, the torque increment was greater in the rehabilitation study, indicating that restoring muscle strength to baseline after immobilisation-induced loss may be easier than increasing it from baseline.
Although loss of muscle mass is associated with a reduction in strength, the rate of decline in strength in sarcopenia has been shown to be much greater than the rate of mass loss.17 In lower leg immobilisation, a reduction in strength of 27% has been reported when muscle mass loss is only about 5%.18 We found previously that when compared with values after a period of rehabilitation, a 25% loss of muscle volume corresponded to a 60% loss of torque in dorsiflexion and a 50% loss in plantarflexion.4 Conversely, 12 months of resistance training in elderly men (70–82 years) was found to increase plantarflexor MVC torque by 20%, whereas muscle volume assessed by MRI increased by only 12%.19 A meta-analysis of studies of resistance training in older people found that none of the measures of training volume correlated well with measures of muscle morphology, and up to a year of training with two to three sessions per week was required to produce measurable improvements in strength and morphology.20 Another study found significant increases in quadriceps CSA following 9 weeks of strength training when comparing the trained with the untrained limb. Men displayed greater increases than women but age had little effect.21
A similar lack of correspondence is reported in this study in which although muscle strength can be seen to increase, even over 8 weeks, there is no measurable change in muscle volume. It is not clear if the apparent mismatch is due to changes in specific muscle tension (force per cross sectional area) or impaired ability to activate the skeletal muscle. It does, however, indicate that the quality of the muscle is affected and that changes in muscle mass or ACSA alone do not provide a good biomarker to monitor the progression of muscle atrophy or the efficacy of rehabilitation. Larger numbers may clarify these results, but recruiting and retaining volunteers for such an intensive study was not easy.