Discussion
The main results of the present study were that weaker LE muscle strength was associated with a higher risk of traumatic knee injury, including ACL injury, in youth female athletes but not in males. We observed a 9.5 times higher odds of sustaining an injury among weak female athletes compared with strong females. Hence, weaker levels of LE muscle strength may be one important, and modifiable, risk factor for sustaining a traumatic knee injury in youth female athletes (figure 4).
Figure 4Number of injured athletes with an ACL injury in strongmedian versus weakmedian groups of female and male athletes.
Weaker LE muscle strength risk factor for knee injury in youth female athletes
Our results indicate that weaker LE muscle strength is a risk factor for traumatic knee injury in females. In support of this, the binary logistic regression showed that the odds for having a knee injury was lower with greater muscle strength. Furthermore, the ROC curve analysis indicated that an r1RM squat strength ≤1.05 kg/bodyweight increased the risk of injury in female athletes. In line with our findings, Khayambashi et al
8 reported in a case–control study that weaker muscle strength was associated with a higher risk of ACL injury in 20-year-old athletes. When data were collapsed across sex, non-injured athletes had significantly greater hip external rotation and hip abduction strength compared with injured athletes. However, no strength–injury relationship was presented for females and males separately.8
In contrast to our findings, a Norwegian study9 did not observe any relationship between strength and knee injury in elite female soccer players. One reason for the differences between our study and the Norwegian study could be derived from the measurements of muscle strength. They tested athletes for dynamic muscle strength with a test of 1RM during a seated leg press,9 while we used a barbell squat test. Both the barbell squat and the leg press tests target the LE in a closed-kinetic chain position. However, compared with a seated leg press, a free barbell squat generates greater quadriceps and hamstrings activity,20 and challenges the neuromuscular system of the prime movers to a greater extent.21 Another possible reason for the contrasting findings could be due to the included population. Nilstad et al
9 included adult elite female athletes, whereas we included youth athletes. In general, adult elite athletes are already at a high level of physical performance, including muscle strength, compared with non-elite youth athletes. In a recent International Olympic Committee consensus statement, the authors argued that participation in organised sports does not alone ensure appropriate levels of strength and neuromuscular capacity to sufficiently meet the physical demands of sports.22 Although improvements in performance can be attained to a certain degree in youth, the full development of a specific skill and muscle strength depends on full maturation of the nervous system.23 Muscle strength improves until full maturity is reached; usually by age 20 in women and between the ages 20 and 30 in men.23 Hence, it could be that the level of muscle strength influences knee injury risk in youth female athletes, but not in females who have reached maturity and elite level. Injury risk factors in youth may differ from those in adults and, therefore, injury risk screening may need to be adjusted depending on the age of the target population.
Aspects of gender differences
Our hypothesis that weaker LE muscle strength was associated with future traumatic knee injury, and ACL injury, was confirmed for female athletes, but not for males. There may be several explanations for this gender difference. It has been suggested that muscle strength, in terms of lower hamstring to quadriceps torque ratio, is a risk factor for ACL injury in female but not in male athletes.7 Also, LE muscle strength increases significantly less with age among youth females compared with youth males.12 24 Furthermore, gender differences have been reported for muscle activation patterns during side-cutting manoeuvres, possibly providing inadequate joint protection and stability in females.6 Another gender-related factor is that muscle fatigue increases knee abduction moment during a drop jump to a greater extent in young female athletes compared with male athletes; a factor thought to be associated with the higher risk of ACL injuries observed in women than in men.25
Taken together, muscle function features such as muscle strength, endurance and neuromuscular control appear to differ between genders. These factors may be especially important to consider for preventing knee injury in young female athletes, whereas other factors may be more important for males. Hence, the findings from our study and previous studies suggest that injury screening for modifiable factors such as muscle strength, and injury prevention training including LE strength, is needed in female youth athletes.
Injury in youth athletes
The rate of ACL injury seems to have increased in children and adolescents over the past couple of decades26–28 with the greatest risk seen in female high-school soccer and basketball players.29 One explanation for this could be due to the increased demands on young athletes with an increasing trend in sports specialisation already during childhood.22 30–33 This, together with less spontaneous physical activity, might have a negative effect on children's body tissue that may not be prepared for the required load. Optimal recovery between practice/matches is crucial for neuromuscular and strength improvements, and to avoid excessive musculoskeletal stress and risk of injury.23 In the present study, we found no differences between females and males for number of training hours. However, we did not have data for the number of total exposure hours. It has been a concern that talented young female soccer players frequently play additional matches with other teams than their own and with a team at a senior level with older, more physically matured and skilled opponents, putting them at a higher injury risk.34 It has also been recognised that soccer athletes playing two matches with a maximum of 4 days recovery between matches, compared with one match per week, increases the risk of injury.35 Hence, the issue of load management in youth athletes should be taken in consideration and be further investigated in youth athletes.
Strengths and limitations
The main strength of the present study is that the sample consisted of a homogeneous group of athletes, within the same age, at high-school sport programmes, and involved in high-risk sports. Another strength is that the gender distribution is similar to that presented in each specific sport and age range in Sweden, suggesting that the present study provides a typical representation of these athletes. Some limitations in the present study need to be acknowledged. First, traumatic knee injury was reported by the athletes rather than by a more valid approach such as acquiring data from medical records. In the injury section of the form, we asked specifically about traumatic injury, including a definition of such injury. Due to the nature of a traumatic injury, with pain, functional limitations and inability to participate in sports, it is likely that the athletes did recall such an injury. Thus, an underestimation of injuries was likely not present, although the presence of any overestimation is difficult to value. Second, data from the 1RM test were collected retrospectively, possibly affecting reliability. Although good reliability has been reported for this test,18 no inter-rater reliability data were collected in the present study. However, the 1RM squat was assessed by experienced instructors, all had taken the same education, and they all followed the test procedure of Fysprofilen. The barbell squat is widely used in sports, easily used in various settings and is thought to be a functional exercise relevant to movements in several sports.36–38 Still, a possible disadvantage of the squat test could be the difficulty to distinguish the relative contribution of factors (ie, LE and trunk strength, flexibility, neuromuscular and postural control) to failure in the squat test and, thus, to predict injury. Third, although there were no differences in 1RM absolute value between responders and non-responders, we cannot exclude that some of the non-responders may have had a knee injury possibly affecting the strength results.