Introduction
Anterior cruciate ligament (ACL) injury is a severe and common injury to the knee. In the USA, ∼80 000 ACL injuries are reported per annum, which equates to 28 injuries per 100 000 people.1 In Europe, the incidence of non-contact ACL injuries has been reported to be between 34 and 80 injuries per 100 000 people.2 In addition, research from US collegiate sports and European professional football suggests that incidence of ACL injury has remained relatively unchanged over the past 30–40 years3 ,4 in spite of considerable research being undertaken in the area.4 These statistics are troubling given injury to the ACL leads to impairment of physical function acutely,3 and many people who sustain an ACL injury develop osteoarthritis in the knee later in life5–10 and other comorbidities11 ,12 making it a chronic issue also.
Unchanged ACL injury rates demand novel prevention strategies that concentrate on dynamic knee joint stability.4 A mechanism of ACL injury risk mitigation which has not been well studied is vertical stiffness. ‘Stiffness’ is a mechanical variable derived from Hooke's law in physics which can be applied to human movement. Hooke's law states that the force required to deform an object is related to a proportionality constant (spring) and the distance that object is deformed.13 ,14 The ‘spring’ in this case reflects the viscoelastic properties of the various body tissues and the degree of stiffness is the result of the coordination and interaction of these tissues including tendons, ligaments, muscles, cartilage and bone, and their ability to resist change once force is applied.15–17 More specifically, vertical stiffness is a measure of whole body stiffness and is defined as the quotient of maximum ground reaction force and centre of mass displacement.16 ,18 Therefore, vertical stiffness is subject to the coordination and interaction of tendon, ligament, muscle, cartilage and bone, and the interaction and coordination of dynamic joint stability/stiffness at the spine, hip, knee and ankle joints16 ,19–25 (figure 1).
Vertical stiffness has been well researched in the area of sports performance because it has been linked to superior athletic ability,26–30 and because research has shown stiffness to be easily enhanced. Training programmes which focus on knowledge of performance, movement across uneven or unstable surfaces, strength training and/or plyometrics have all been shown to be effective at increasing stiffness.13 ,26 ,31–35 However, the study of vertical stiffness in the context of sudden or traumatic musculoskeletal injury is relatively novel. Nevertheless, it has been postulated that vertical stiffness is a risk factor for common sporting injuries due to increased vertical ground reaction force.13 ,36 ,37 Some research has argued a relationship between lower limb or vertical stiffness and bony injuries such as stress fracture.38 However, stress fracture is an overuse injury which can be prevented by effective load monitoring.39 Thus, stiffness may not be as problematic for overuse injuries, rather accelerated or exponential increases in training load and not adhering to progressive overload training principles might be. Vertical stiffness has also been implicated as a risk factor for hamstring strains in two separate research papers,40 ,41 but work by our research group which addressed notable flaws in those studies showed increased stiffness is unlikely a risk factor for muscle strain injury.42 To the authors' knowledge, no evidence exists to suggest increased vertical stiffness is a risk factor for non-contact connective tissue injury such as ACL strains.
Given that vertical stiffness is partly regulated by joint stiffness, or dynamic joint stability, modifying vertical stiffness may assist in preventing ACL injury particularly non-contact ACL injury. This concept is supported by other work previously undertaken by our research group which showed that greater vertical stiffness is related to increased hamstring and quadriceps preactivation and co-activation,15 and that increased co-activation of the hamstrings and quadriceps reduces ACL elongation and anterior tibial translation (ATT).43 Therefore, when vertical stiffness is high knee joint stiffness/dynamic knee joint stability must also be high.16 ,25
It is possible that vertical stiffness as a risk factor for ACL injury has not yet been investigated because measuring ACL stress in vivo has been very difficult and is either invasive or derived from indirect or inaccurate measures. In fact it is only that recent advances in image registration technology, whereby CT images are registered with fluoroscopy (video X-ray) to allow four-dimensional (4D) motion analysis of bone that non-invasive measures become more accurate. This technology, developed by our group, provides the opportunity for measuring kinematics with previously unachievable precision and, for the first time, enables in vivo measurement of ATT.44–46 Excessive ATT has been implicated in serious knee injuries such as ACL injury.4 Furthermore, by using a biomechanical model with the image registration technology to locate the ACL attachments, measurement of the distance between those attachments can provide some insight into change in ACL length, or ACL elongation. This is important because the ACL will fail when elongation, or consequent strain, is too great.43 ,47
The aim of this study was to determine if vertical stiffness during a multidirectional hopping task was related to measures which represent loading of the ACL, specifically ACL elongation and ATT. ACL elongation and ATT were measured in vivo using image registration technology with known high precision.45 ,46 A secondary aim was to evaluate the relationship between ACL elongation and ATT.