Introduction
A batting technique consists of many elements such as the stance, grip of the bat, backlift, initiation, downswing and follow-through.1 One of the key components of the overall batting technique is the backlift, which is the movement of the bat just before the batsman initiates the batting downswing prior to making impact with the ball.2 It can be described as a technical component of batting in which its traditional movement is limited to a linear plane.3
The mechanics of the backlift are poorly understood;4 ,5 however, qualitative biomechanical analyses of movement in sports are key to understanding performance.6 Biomechanical analyses can provide important insights into the biomechanics of technique in sports, especially in those skills that have to satisfy parallel performance outcomes by choosing from a set of joint angles in the frontal or lateral planes.7–9 Cricket coaches have been teaching batting techniques to cricketers at various levels since the inception of the game. One such technique that is advocated is the straight batting backlift technique (SBBT).10 The technique emphasised taking the bat directly over the middle stump.
However, there is no recommendation about the direction in which the bat face should be pointing. The assumption may have been that the bat face must also point directly backwards.11
Most coaching literature continues to advocate this traditional norm in which the backlift of the bat is in the direction of the wicket-keeper, towards the stumps or towards the slips.11 ,13–17 However, this method is not the one adopted by some of the world's most successful batsmen.18
Path tracings of Australian international batsmen (n=9) showed that their bats follow a distinctive loop in which the path of the bat deviated well outside the mean alignment of the shoulders to reach an average maximum angle in the transverse plane of 47.19 It is unclear why this occurred, other than the possibility that increasing the range of different strokes of which the batsmen would be able to execute a more looped backlift.
The lateral batting backlift technique (LBBT) is one in which the bat is lifted laterally in the direction of second slip.18 Using this technique, both the toe of the bat and face of the bat point directly towards the off-side (usually between slips and point). With the SBBT, the toe of the bat is directed towards the stumps and/or the face of the bat points towards the ground or the wicket-keeper.18
Most successful international batsmen and uncoached cricketers (77%) used an LBBT, whereas coached cricketers used an SBBT (23%). Batsmen who used an LBBT also had an open face of the bat (the bat face in the direction of point or towards the off-side). This finding is the opposite of what coaching manuals advocate.18
We thereafter sought to investigate the backlift further in a follow-up research study among coached and uncoached cricket players. If players are not coached, they tend to strike the ball using an LBBT.20 This finding may suggest that early coaching emphasising the traditional SBBT could be disadvantageous to the young cricketer, whereas perhaps the LBBT could produce superior long-term outcomes.20
As such, technique forms a key component in cricket and enhancing the understanding of cricket batting biomechanics, skill acquisition and assisting cricket coaches to develop efficient batting skill development programmes is imperative.21 However, coaches often find it difficult to design the most effective batting skill practice structures or programmes.21 In addition, there is limited empirical evidence to assist coaches to develop an evidence-based approach.
In the light of these issues, it is particularly challenging for most coaches to coach a backlift in the lateral direction or as a looped technique. Furthermore, though the backlift has been shown to be a contributing factor to successful batsmanship, there is currently no evidence showing which backlift technique type promotes better run scoring and performance.
Therefore, a novel coaching cricket bat was conceptualised that has weight on either sides towards the distal end of the bat, but which also weighs significantly less than a conventional cricket bat used by junior cricketers. The conceptualisation of the dimensions of the bat originated from combining a cricket bat and tennis racquet into one model (figure 1). The coaching cricket bat has been conceptualised, designed, manufactured and patented in South Africa (Design Registration number: F2013/01526, updated cricket bat, class 21, part F).
Research aims
There is presently no evidence that a cricket bat in its current form and dimensions allows a young cricketer to train effectively so that he or she can hit the ball with more power and efficient timing in a match situation. There has been limited investigation into improving the performance of batting among junior cricketers in the form of a revised or newly conceptualised coaching cricket bat. Therefore, the purpose of this study was to test the effectiveness of the novel coaching cricket bat among junior cricket batsmen. We wished to test the hypothesis that this novel coaching cricket bat would enhance their performance and influence the direction of the batting backlift technique.
Hypothesis
We hypothesised that there would be alterations in the backlift technique of cricketers who use the novel coaching cricket bat for more than 4 weeks.