Discussion
The present study showed that the SIT programme of just 4 min/week for 12 weeks decreased total body fat mass in men but not in women, while women improved VO2max more than men. Improvements to the rates of fatty acid oxidation during submaximal exercise after the 12-week training programme were similar in men and women. These results highlight statistically significant sex-differences in physiological responses to very high-intensity training in the participants of this study who were recruited from the general population.
Body fatness
Body fat levels were within normal ranges for participants’ ages at baseline34 and lower body fat than their BMI related cut-offs.35 Just 80 s of very intense sprint exercise per session, equal to 48 min exercise over 12 weeks, resulted in statistically significant reductions to body fat mass. As far as we are aware, the training duration of 4 min/week is the shortest reported to effectively cause fat loss without additionally restricting food intake. These results build on previous high-intensity training studies that also reported fat loss,2 ,21–23 although they utilised lower intensity and longer duration intervals than our training programme did.
The fat loss was principally due to changes seen in men, since women did not change their total body composition despite losing approximately 800 g fat from their legs. Our study is the first to show sex-differences in the changes to body composition after SIT and are in line with previous work indicating that men generally lose more fat than women after endurance training.36 The reasons for the sex differences in training responses of body fatness and metabolism are not clear.37 There is evidence that sex-differences in body fatness are linked to physiological actions of sex hormones,38 but when energy balance was more closely regulated throughout an endurance training programme, overweight and obese men and women had similar fat loss.39 The sex differences in fat loss might also be related to the sex differences in relative muscle mass,24 skeletal muscle contractile25 ,26 and metabolic characteristics.27 ,28
SIT sessions have very low energy consumption, of around 200 kJ/week, compared with endurance exercise of around 2000 kJ/week.13 The direct energy expenditure therefore cannot explain the fat loss occurring after 12 weeks of SIT. Other contributing factors might include an increase in post exercise energy expenditure or overall shift towards greater fatty acid oxidation during habitual activities throughout the day, as occurs after endurance training40: the results showing increased fatty acid oxidation during low and moderate intensity activity are consistent with this. It is also possible that metabolic rate and lipid oxidation remain elevated after each training session, and there are reports that such effects are pronounced in men and negligible in women,40 ,41 which might help to explain our observed loss of fat in men but not in women. Women may also have a lower energy expenditure during exercise, due to the lower absolute workloads, despite working at similar relative exercise intensities, allowing men to reduce fat mass more than women after training.42 Treuth et al43 found that resting metabolic rate remained around 15% higher in participants performing an acute session of SIT compared to those who completed endurance training. Higher intensity exercise is also associated with prolonged suppression of appetite and hunger.44 However, others have reported increased energy intake in participants completing high-intensity training compared to non-exercising controls and those performing lower intensity exercise.45 The combination of a shift towards greater fatty acid oxidation and elevated resting energy expenditure could lead to a negative calorie balance and thus loss of body fat.
Maximal rate of oxygen uptake:
Our results showed an overall 9% increase in VO2max after 12 weeks of SIT. This increase is similar to previous reports from younger participants after SIT9 and of similar magnitude to VO2max gains after conventional endurance training programmes in which training sessions lasted around 1 h.13 ,18 Men and women both improved VO2max, but the gains in women were greater than those in men. It is not clear why disparity between sexes would occur in VO2max SIT responses. Men have been shown to have higher gains in VO2max following conventional endurance exercise,46 but results from SIT studies are mixed. Scalzo et al47 showed young women had similar gains in VO2max to young men, but other studies reported that men did not increase VO2max48 while women showed large increases after SIT.49
VO2max is an indicator of overall cardiopulmonary fitness and is dependent on the transportation of oxygen through the respiratory, cardiovascular and muscle systems to supply oxygen to the mitochondria for oxidative metabolism. A higher relative amount of lean mass in men compared to women, coupled with a higher relative body fat mass in women compared to men, may go some way in explaining the differences between men and women in maximal oxygen consumption.50 However, the supply of oxygen to the working skeletal muscles is thought to be a limiting factor in VO2max,51 so the higher VO2max response in women might point to higher adaptations of oxygen supply than those in men following SIT, but more focused studies examining cardiac output, blood volume, haematocrit and blood flow distribution are needed to clarify this finding. Conversely, after regular endurance training, men had higher gains in VO2max compared with women.46 It is possible that the training volume (higher in endurance) and training intensity (higher in SIT) lead to disparate adaptations between men and women in the oxygen carrying capacity of blood (eg, total blood volume, haemoglobin or cardiac output) or local vasculature, but physiological mechanisms driving such responses are unclear.
Rates of fatty acid oxidation
In the untrained state, women have higher relative oxidative capacity than men,52 and higher relative rates of fatty acid oxidation during prolonged exercise,53 slower muscle phenotype with proportionally more type I fibres54 and lower mitochondrial fractional synthetic rate after training.55 Despite these sex differences in muscle metabolism and contractile characteristics, men and women in the present study showed similar gains in rates of fatty acid oxidation at all workloads from 30% to 60% VO2max after training (figure 2). This metabolic adaptation occurred independently of changes to VO2max and was not associated with the changes to body composition. Ours was the first study to look for sex differences in FATmax responses after SIT, but increased fat oxidation has previously been reported,2 ,3 ,16 and could be related to improved muscle oxidative capacity and enzymes of fatty acid oxidation.56–58 The underlying metabolic pathways coordinating these adaptations seem to be similar in SIT and conventional endurance exercise, with increased metabolic enzymes and capillarisation13 ,7 ,19 regulated in part by PGC-1α, AMPk and CAMk.13 ,20 Elevated post exercise oxygen consumption may reflect increased rates of fat utilisation after high-intensity exercise.59 ,60 The elevated rates of fatty acid oxidation are associated with improved muscle metabolism61 and, alongside changes to blood lipid profiles, cardiopulmonary fitness and body composition, it is a defining feature of health status.62
Figure 2Maximal rates of fat oxidation in men and women across different submaximal exercise intensities in the untrained state and after 12 weeks of SIT. *Indicates statistically significant increase from baseline (p<0.05). SIT, sprint interval training.
Fasting plasma glucose, insulin and lipid profiles
Levels of circulating total triglycerides in fasting plasma samples remained unchanged after training, while LDL and the cholesterol:HDL ratio improved. A reduction of total circulating triglycerides has been associated with regular aerobic exercise,63–65 although it is not a consistent finding in high-intensity training programmes,66 ,67 as noted in a recent review.68 HDL increased after the first mixed exercise session, but did not change over the 12-week training. Fasting plasma glucose, insulin and the insulin sensitivity estimated using HOMA,33 did not change significantly with training. Nor was change in fasting plasma glucose and insulin reported in a study of 16 healthy men after 6 SIT sessions, although those participants did improve glucose tolerance when measured using an oral glucose tolerance test.4 Hood et al69 reported 35% improvement in HOMA in seven middle-aged men (n=4) and women (n=3) after six interval training sessions performed at lower intensity than that used in the present study. Richards et al70 used the hyperinsulinaemic euglycaemic glucose clamp to show improved insulin sensitivity in 12 participants after 6 SIT sessions, and Whyte et al16 showed improved insulin sensitivity in 10 young, sedentary men after 6 SIT sessions. These previous reports outlining positive effects of SIT on glucose metabolism contrast with those from the present study.
Limitations
The semisupervised design of the training programme gave exercise volunteers more control, and although this is the case in real-life situations, it may confer less commitment or obligation to training compared with typical fully supervised laboratory-based programmes. We were not able to control for physical activities outside of the training programme and dietary intake was not monitored throughout the training programme. Instead, participants were asked to maintain their usual patterns of food and drink consumption. Finally, we did not control for menstrual cycle variations.