Background
The health and social benefits of participating in regular physical activity are widely established.1 ,2 Organised team sport has been shown to be one way of improving health and fitness,3–8 with these findings underpinning the strategies used by sports governing bodies to recruit prospective players.9–11 Engaging youth populations is important because of the health improvements sports participation may confer during childhood and into adulthood if sustained.12 However, the risk of acquiring an activity-related injury is an inherent consequence of participation.2 ,13 This has prompted public calls to devise and implement evidence-based, sport specific strategies that balance injury risk reduction with optimising benefit from sports participation.14–16
Youth rugby injuries as a prominent public health topic
Rugby Union (hereafter referred to as ‘rugby’) is among the most popularly played contact sports world-wide. The game has experienced substantial growth since the transition at senior levels to professionalism in 1995, and this is likely to continue with the inclusion of rugby sevens in the Olympic Games from 2016.17 Participation is particularly popular within the youth level (6–18 years old), with over 1.5 million youth players in England.18 From the ages of 14–18 years, each team comprises 15 players with match durations up to 70 min. Rugby matches are characterised by intermittent bouts of high-intensity activity mixing running and evasion with frequent player to player contact events.19–22
What this study adds?
This protocol outlines the first study to assess the efficacy of a preventive exercise programme for reducing injury risk in a youth contact sport population.
Similarly, this protocol also describes the first study to profile youth rugby coaches’ beliefs and attitudes towards injury prevention and their influence on compliance to the exercise programmes.
Given the intensely physical nature of match play, match injury incidence is high in rugby.23 There is also potential for catastrophic (permanent disability) injuries, although these are rare.24 ,25 Epidemiological studies in youth rugby have reported time-loss match injury incidence rates of 24–47/1000 player-hours, with lower limb joint and ligament injuries the most common injury diagnosis,26–28 injuries to the knee and shoulder region resulting in the greatest burden,27 and contact situations such as the tackle presenting the greatest injury risk.29–31
Sport-related injuries may lead to future reductions in health, an increase in disability and ultimately a reduced quality of life.32–34 A recent study demonstrated high financial costs for injured youth rugby players seeking further medical treatment following participation in a rugby tournament in South Africa.35 The average cost of follow-up injury treatment in this study was estimated at US$731 per injured player, which is higher than previously reported for high school male American Football players (US$577) and wrestlers (US$670).36 The disruption caused by injuries on the physiological and morphological development experienced during growth and maturation also heightens the consequences of injury to youth athletes.37 These findings have collectively contributed to increasing public concern about the risk of injury from youth rugby, leaving the possibility that perceptions of excessively high-injury risk might reduce further participation at the youth level.14 ,38 The formulation and implementation of appropriate preventive strategies to reduce injury incidence in youth rugby is therefore a priority.
Preventing injuries in rugby
Interventions to reduce injury risk in rugby to date have largely targeted catastrophic injuries to the head and spinal cord, which carry the most profound adverse consequences to both the subsequent quality of life of injured players and the public profile of the sport.39–41 This has been addressed by improving coaching standards and ensuring that the laws of the game are appropriate and consistently enforced. National initiatives such as the New Zealand Rugby Football Union's RugbySmart,42 ,43 and South Africa Rugby Union's BokSmart programmes,44–46 have demonstrated effectiveness in reducing catastrophic injury incidence (Relative Risk (RR): 0.6).47 ,48
In addition to improving coaching standards, law amendments have sought to reduce the risk posed by events that carry the greatest propensity for severe injury, with a focus on game events where players engage in physical confrontation such as the scrum and tackle. Recently revised scrum engagement protocols, defined in the laws of the game, have reduced and standardised the pre-engagement distance between opposing front rows and introduced a prebind requirement, thereby reducing the high forces generated by the initial impact at engagement.49
Interventions to reduce the incidence of tackle-related injuries in rugby have focused on the coaching of safe and effective tackle technique,50 and consistent enforcement of safe tackle technique through employing more severe sanctions in cases of unsafe or illegal tackles. However, there is only anecdotal evidence at present to support a consequent reduction in the instances of dangerous tackling and a reduction in overall tackle-related injury risk.51
Improving the physical condition of players remains a consistent theme in the majority of recommended strategies to reduce injury risk in sport, with inadequate physical fitness cited as a common risk factor for injury.52 ,53 Preventive exercise-based intervention in youth soccer has been associated with a reduction in lower limb injury risk (RR: 0.68),54 and knee ligament injury risk (RR: 0.59).55 However, the efficacy of preventive exercise programmes have yet to be investigated in youth rugby. It is common for injury prevention (prehabilitation) programmes to be implemented at elite levels of rugby.56 However, these are primarily implemented at a local level by practitioners and such programmes may only be adopted practice in a small minority of teams at youth/school level. Before such exercise programmes may be rolled out and evaluated for effectiveness in real-world contexts, their efficacy must first be demonstrated in a more tightly-regulated environment.57
Components and features of an efficacious preventive exercise programme
From a biomechanical perspective, injury may be viewed as the result of a tissue being acutely exposed to a force in excess of its normal tolerance or a repetitive exposure to forces that may result in submaximal load becoming injurious.58 Load tolerance is tissue-specific and dependent on the nature, magnitude and velocity of loading patterns in addition to other intrinsic player characteristics such as physical fitness and previous injury history. Preventive training strategies may reduce harmful tissue loading patterns through reducing the external forces acting through a tissue, altering posture and kinematics and enhancing a specific tissue's ability to withstand load. Exercise training interventions have been proposed as the most appropriate means to effect these biomechanical and neuromuscular changes and a consequent reduction in injury risk.58 ,59
A recent review article by Herman et al60 highlighted that efficacious preventive exercise programmes share similar characteristics such as including varied training methods, progressing exercise difficulty or volume at regular intervals, including sport-specific content, being completed at least three times per week by players and being implemented for a minimum trial period of 12 weeks. It has been indicated that adopting such comprehensive multifaceted exercise programmes may reduce injury risk, although which combinations of exercise training methods offer optimal efficiency and efficacy in reducing injury incidence is unknown.61 For instance, a recent meta-analysis of the existing literature demonstrated that programmes that were multifaceted (OR: 0.32) or focused on strengthening (OR: 0.32) or core stability (OR: 0.33) were shown to be particularly efficacious in reducing knee ligament injury risk.62
Change of direction and landing are common events in rugby which place substantial external forces through lower limb joints and have previously been implicated in non-contact lower limb soft tissue injury occurrence in other field-based sports.63–66 In addition, injuries to lower limb structures such as the anterior cruciate ligament have previously been reported among the injury categories associated with the greatest burden in senior professional (108–186 days lost/1000 h athlete-exposure) and academy rugby players (241 days lost/1000 h athlete-exposure).27 ,67 ,68 Therefore, training methods that serve to improve absorption of external forces while enhancing lower limb joint position sense and muscle strength have been proposed to reduce the incidence of such injuries.58 Lower limb proprioception and plyometric training (ie, jumping, bounding and dynamic stabilisation to enhance power and speed) have been shown to improve handling of external loads on the knee and improve joint angles during landing.69–72 Furthermore, these forms of training may also result in beneficial voluntary and reflexive muscle activation patterns that reduce harmful joint loading through enhanced proprioceptive feedback mechanisms.73 However, the evidence associating these potentially favourable changes with injury risk reduction remains equivocal.74 ,75
Movement feedback training for manoeuvres such as cutting and landing may also alter movement patterns and reduce potentially harmful joint forces. Feedback training involves providing qualitative feedback to an athlete according to a description of techniques that minimise their risk of sustaining an injury.76 Previous studies have demonstrated that feedback training designed to alter torso movement and foot placement relative to the body's centre of mass and increase co-contraction of the hamstring and quadriceps may reduce knee varus/valgus loading during cutting and landing manoeuvres.77–82 Additional considerations for training include differences between anticipated and unanticipated actions, with the latter being associated with increases in external loading and inhibited muscle activation patterns that stabilise joints.83 ,84 Rehearsal of cutting and landing techniques should therefore include activities that ensure players are familiar with making unanticipated manoeuvres.
Resistance training is a commonly adopted part of training programmes for many competitive and recreational athletes.85 Previous research has demonstrated strength training alone may not alter biomechanical or neuromuscular risk factors for joint injuries,72 ,86 but may potentiate the effects of concurrent methods such as feedback training.87
Eccentric resistance training of the posterior thigh has been associated with reductions in the incidence of hamstring muscle strain injuries in soccer (RR: 0.30 to 0.43),88–90 on account of correcting hamstring to quadriceps strength imbalance and altering the length–tension relationship of the hamstrings.91 Findings in professional rugby also support the use of eccentric strengthening of the posterior thigh as part of a comprehensive training programme in reducing match-related hamstring muscle injuries (RR: 0.56).92
Acute traumatic shoulder injuries, such as dislocation or instability, sustained during match-related contact events have previously been associated with a high injury burden in professional (105 days lost/1000 h athlete exposure) and youth rugby players (259 days lost/1000 h athlete exposure),27 ,68 leading to calls for training programmes to be employed that serve to ‘prehabilitate’ the shoulder to the contact-related demands of match play.93 In support of this, previous research has highlighted the use of resistance training of the upper limb to correct rotator cuff imbalances around the glenohumeral joint,94 which has been highlighted as a risk factor for shoulder injury in rugby players.95
The inclusion of resistance training exercises designed to address neck strength also appears warranted. Recent evidence proposes that neck strength is a modifiable risk factor for concussion,96 with Collins et al97 demonstrating that an inverse relationship may exist between concussion risk and neck strength. However, the efficacy of a neck strengthening intervention for reducing concussion risk has not yet been demonstrated.98 Furthermore, recent evidence in youth rugby players suggests that neck strength profiles are subject to wide intra-age group variation,99 with under-18 front-row players being shown to possess significantly lower neck strength profiles than adult front-row players despite having a similar peripheral strength profile.100 Given that the under-18 age group is the last recognised youth playing age group before players may play in the front row in the adult game, this highlights the potential risk of injury to players, particularly those playing in the front row, who are transitioning into the adult game without the necessary physical capabilities. These findings collectively highlight the need for training strategies designed to strengthen the neck musculature for the dual purposes of reducing both neck injury and concussion risk.101
This paper outlines the research aims, study design and methodology for a cluster-randomised controlled trial designed to evaluate the efficacy of an exercise programme in reducing injury risk in youth rugby. The study design has been devised in accordance with the CONSORT statement.102