Discussion
This study demonstrates that EHI is frequently diagnosed in temperate climates outside of summer months and that recruits, personnel wearing occlusive dress and those who are unacclimatised to heat are at reduced risk of hospitalisation. The enduring threat posed by EHI and the novel association of traditional risk factors with reduced, not increased, OR for hospitalisation raise important questions about how best to facilitate physical performance and limit harm from severe EHI.
The need to inform heat stress management of military activities with epidemiological research applies equally to sport.9 ,11 ,13 Calls for evidence and guidelines that apply more specifically to individual sports and athletic events are valid,11 ,21 but are limited by the relative rarity of EHS. Lessons from settings and populations in which severe EHI occurs more commonly, such as the military, may offer valuable insights into the principal concern about heat stress: namely, the risk of developing dangerous levels of hyperthermia.13
Demographic factors
Historically, military recruits have appeared to be at increased risk of fatal EHI.20 ,22 ,23 In American football, heat-attributed deaths have affected younger, high school-age and college-age players disproportionately.24 Recent reporting indicates that British Army recruits have higher rates of EHI than more experienced personnel.25 Yet while trainees in the US armed forces continue to suffer an excess of EHS17 and heat-related deaths take a persistent toll on young football players,24 the present study found that British Army recruits were at reduced, not increased, risk of hospitalisation from EHI.
Evolving or established episodes of EHI may have been more likely to be mitigated or aborted among the recruit population in this study, perhaps due to early recognition and appropriate treatment. Army training establishments have been the focus of repeated MoD efforts to reduce the incidence and severity of EHI,26–28 and this may have resulted in the lower hospitalisation rate of recruits compared with trained personnel. Management of cases arising outside of recruit training centres could also have varied according to the skills, experience and resources of medical responders in deployable units. In some of the more austere settings in which trained UK personnel operate, access to treatment facilities may be restricted and this could have influenced a decision to treat and reassess at the scene, versus evacuating to higher echelons of care.
Situational factors
In common with military personnel, American football players engage in strenuous activities while wearing uniforms. Additional insulating garments and protective equipment add to the occlusive nature of uniformed dress. Important practical, psychological and adaptive benefits may accrue from training in the clothing ensembles that will be worn during competition and combat. These benefits must be weighed against additional heat production from load carriage and reduced heat dissipation in layered or impermeable clothing, from which a state of uncompensable heat stress—characterised by rising core temperature and heat storage—may arise.6
Most uniformed military activities approach or cross into states of thermal uncompensability.29 The OR for hospitalisation associated with occlusive dress was not increased in the present study, however, but rather was reduced by almost half relative to vented dress. This may simply reflect a relationship between the intensity of exercise and the risk of severe EHI, with MoD guidance advocating the selection of lower intensities when training is conducted with additional insulation and loads. These findings also accord with common military guidelines that target a lower core temperature limit during uncompensable exposures, by requiring commanders to incorporate frequent breaks during planned training activities.29
Group-paced activities (eg, marching and collective carriage of heavy loads while running) accounted for 70% of total EHI cases and 78.5% of hospitalisations in this study. Self-paced activities were characterised by greater dispersal of individuals and included foot patrols, solo marches, competitive runs and recreational activities such as multisport events. High levels of motivation, extreme performance goals and factors that potentially impair thermal perception—such as hyponatraemia from overdrinking30—could arise in either pacing category. The distinction may be less relevant to EHI susceptibility, therefore, though a trend towards increased hospitalisation from group pacing was apparent and may have attained statistical significance in the multivariate analysis if the study was larger.
Traditional risk factors for EHI
In a large series of EHI casualties from the US Army, dehydration at point of incapacitation was reported in 17% of cases.14 It has been highlighted that this factor was absent in the other 83% of cases31 and that substantial dehydration may arise without ill effect in successful civilian endurance runners.32 On the other hand, the British Army has practised ‘breaking the march’ for water intake since the time of Wellington33 and its recent experiences support this practice. After participating in a special forces selection event conducted during a heat wave in July 2013, three British Army soldiers died from the effects of heat. At inquest, inadequate provision of water was identified as contributory to the death of one soldier and was highlighted as a factor in other cases of EHI arising in the same event.34 In the present study, the increased OR for hospitalisation associated with dehydration did not attain statistical significance, but lends support to the idea that water intake may play a role in preventing severe EHI in this particular population. Where water is available ad libitum, a protective mechanism may be the pause in strenuous muscular activity—allowing body temperature to fall and reducing total heat storage—rather than maintaining or forcing hydration levels per se.
The most striking difference between traditional risk factors identified in hospitalised cases of EHI and those managed without admission to secondary care relates to acclimatisation status. Intrinsic heat production may exceed the body's capacity for dissipation at any time of year,1 and in relation to activity-specific outcomes, acclimatisation should be judged as an individual's expected tolerance for a given combination of internal and external heat.35 ,36 The finding that ‘unacclimatised’ cases of EHI were reported from temperate climates, outside of summer months, provides evidence that physicians asked the appropriate question regarding acclimatisation status: ‘acclimatisation to what?’.35 If this reporting practice was consistently observed, then our findings are noteworthy, though potentially controversial. Recent consensus guidelines present heat acclimatisation as ‘the most important intervention one can adopt to reduce physiological strain and optimise performance’,11 yet it would appear that those individuals who were considered best adapted to heat were at risk of greatest harm from its effects.
It has been shown that acclimatisation is associated with reduced incidence of syncope during exercise in the first days of heat exposure,37 but empirical evidence for a reduction in EHS is lacking. Acclimatisation was not considered protective in French military personnel deployed overseas, in whom the median time to being hospitalised as a result of EHI was 60 days from arrival.38 Further evidence to support an increased risk of hospitalisation in association with heat acclimatisation is provided by a previous study of EHI among British Army personnel in Cyprus. While those military personnel making short (3–4 week) training visits were more likely to suffer EHI, these episodes were generally mild, whereas resident personnel were four times more likely to be affected by severe EHI requiring hospitalisation for 24 h or longer.39
In the present study, a minority of cases hospitalised in hot climates were unacclimatised and nearly all UK cases of EHI were judged acclimatised. These findings align with a model proposing that individuals adapted to higher relative levels of heat stress may suffer more severe forms of EHI, in association with transient reductions in heat tolerance during strenuous exertion.40 The trend towards a reduced, not increased, OR for hospitalisation in cases affected by febrile and infectious illnesses suggests that readily identifiable disease may not have been the universal trigger for this mechanism. In fact, infections associated with EHI in the literature have often been subclinical in nature,41–44 which may have allowed individuals to exercise under higher levels of heat load than if overtly unwell. The ability to perform prolonged intense exercise has itself been implicated in immune disturbances that may lead to EHS, though this may not account for cases of severe EHI arising early in the course of physical activity.2 ,8
Limitations of the study
This study was limited by incomplete or inconsistent reporting in areas of direct relevance, including the clinical parameters of body temperature, level of consciousness and circulatory sufficiency. In the absence of adequate diagnostic information to differentiate EHS from other heat-related causes of incapacitation, hospitalisation was used as a surrogate for severe EHI. The full criteria for EHS may not have been met by all hospitalised cases of EHI; it is also possible that elevated core body temperature was not the primary cause of incapacitation in some cases, who may have received a diagnosis of EHI while suffering from other exercise-related pathologies.2
The lack of adequate denominator data on the entire populations exposed to risk of EHI also presents a real challenge and limits how far these issues can be explored. While capturing complete data from military field exercises and operations can prove difficult,17 ,25 with web-based data capture now widely available, it may be possible to generate useful databases on exposed populations during more formal physical training. Recent efforts by several international sporting federations have been reported in response to the challenge of evaluating epidemiological outcomes from the application of existing or updated preventive guidelines during major competitions.11 ,19 ,21 ,45 ,46