Biomechanical study of the programming of anticipatory postural adjustments associated with voluntary movement

J Biomech. 1987;20(8):735-42. doi: 10.1016/0021-9290(87)90052-2.

Abstract

The present research concerns anticipatory postural adjustments (APA), with the purpose of determining whether they are preprogrammed and of specifying their biomechanical finality. The experimental situation allowed us to distinguish between the voluntary movement itself (an upper limb elevation) and the postural adjustments associated with it. To this aim, the upper limb kinematics, evaluated from an accelerometer fixed at wrist level, were compared to the whole body dynamics, recorded by means of a force platform. Movements, executed in series of five, were studied according to three conditions: bilateral flexions (BF) and unilateral flexions (UF), with (IUF) and without (OUF) an additional inertia, of the stretched upper limb(s). Six right handed adults were tested twice. Results showed that the ground reaction resultant forces as well as the ground reaction resultant moment about the vertical axis presented reproducible variations before and after the onset of upper limb acceleration. The biomechanical organization of APA corresponded, for the three experimental conditions, to an upward and forward acceleration of the body center of gravity, and also, for UF, to a resultant moment directed towards the contralateral side. The duration of APA varied with the characteristics of the forthcoming voluntary movement, increasing significantly from BF to OUF and from OUF to IUF. It is concluded that APA correspond to dynamic phenomena which are centrally preprogrammed. The inertia forces associated with APA may, when the time comes, balance the inertia forces due to the movement of the mobile limb therefore counteracting the disturbance to postural equilibrium.(ABSTRACT TRUNCATED AT 250 WORDS)

MeSH terms

  • Adult
  • Arm / physiology
  • Biomechanical Phenomena
  • Gravitation
  • Humans
  • Kinetics
  • Locomotion
  • Movement*
  • Posture*