Effects of lateral perturbations and changing stance conditions on anticipatory postural adjustment

J Electromyogr Kinesiol. 2009 Jun;19(3):532-41. doi: 10.1016/j.jelekin.2007.12.002. Epub 2008 Jan 30.

Abstract

The study investigates the role of lateral muscles and changing stance conditions in anticipatory postural adjustments (APAs). Subjects stood laterally to an aluminum pendulum released by an experimenter and were required to stop it with their right or left hand. Stance conditions were manipulated by having the subjects stand in the following positions: on a single limb (SS), with feet together (narrow base of support, NB), and with feet shoulder width apart (regular base of support, RB). Bilateral EMG activity of dorsal, ventral, and lateral trunk and leg muscles and ground reaction forces were recorded and quantified within the time intervals typical of APAs. Anticipatory postural adjustments were seen in all experimental conditions, and their magnitudes depended on the stance and the side of perturbation. Accordingly, APAs in lateral muscles increased on the side of perturbation in SS condition, while simultaneous activation of dorsal muscles occurred on the contralateral side. Smaller APAs were seen in lateral muscles in conditions with a wider base of support (NB, RB) and APAs in dorsal muscles were smaller in NB - in comparison to RB - stance. The results of the present study provide new data on the role of lateral, ventral, and dorsal muscles in anticipatory postural control when dealing with lateral perturbations in conditions of postural instability.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adaptation, Physiological / physiology
  • Adult
  • Attention / physiology*
  • Female
  • Humans
  • Intuition / physiology*
  • Male
  • Movement / physiology*
  • Muscle Contraction / physiology*
  • Muscle, Skeletal / innervation
  • Muscle, Skeletal / physiology*
  • Postural Balance / physiology*
  • Posture / physiology*
  • Reflex / physiology
  • Young Adult