Skip to main content

Advertisement

Log in

Repeated-Sprint Ability — Part I

Factors Contributing to Fatigue

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Short-duration sprints (<10 seconds), interspersed with brief recoveries (<60 seconds), are common during most team and racket sports. Therefore, the ability to recover and to reproduce performance in subsequent sprints is probably an important fitness requirement of athletes engaged in these disciplines, and has been termed repeated-sprint ability (RSA). This review (Part I) examines how fatigue manifests during repeated-sprint exercise (RSE), and discusses the potential underpinning muscular and neural mechanisms. A subsequent companion review to this article will explain a better understanding of the training interventions that could eventually improve RSA.

Using laboratory and field-based protocols, performance analyses have consistently shown that fatigue during RSE typically manifests as a decline in maximal/mean sprint speed (i.e. running) or a decrease in peak power or total work (i.e. cycling) over sprint repetitions. A consistent result among these studies is that performance decrements (i.e. fatigue) during successive bouts are inversely correlated to initial sprint performance. To date, there is no doubt that the details of the task (e.g. changes in the nature of the work/recovery bouts) alter the time course/magnitude of fatigue development during RSE (i.e. task dependency) and potentially the contribution of the underlying mechanisms.

At the muscle level, limitations in energy supply, which include energy available from phosphocreatine hydrolysis, anaerobic glycolysis and oxidative metabolism, and the intramuscular accumulation of metabolic by-products, such as hydrogen ions, emerge as key factors responsible for fatigue. Although not as extensively studied, the use of surface electromyography techniques has revealed that failure to fully activate the contracting musculature and/or changes in inter-muscle recruitment strategies (i.e. neural factors) are also associated with fatigue outcomes. Pending confirmatory research, other factors such as stiffness regulation, hypoglycaemia, muscle damage and hostile environments (e.g. heat, hypoxia) are also likely to compromise fatigue resistance during repeated-sprint protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Table I
Fig. 9

Similar content being viewed by others

References

  1. Bangsbo J, Norregaard L, Thorso F. Activity profile of competition soccer. Can J Sport Sci 1991; 16: 110–6

    PubMed  CAS  Google Scholar 

  2. Cabello Manrique D, Gonzalez-Badillo JJ. Analysis of the characteristics of competitive badminton. Br J Sports Med 2003; 37: 62–6

    Article  PubMed  CAS  Google Scholar 

  3. Faude O, Meyer T, Rosenberger F, et al. Physiological characteristics of badminton match play. Eur J Appl Physiol 2007; 100: 479–85

    Article  PubMed  CAS  Google Scholar 

  4. Girard O, Millet GP. Neuromuscular fatigue in racquet sports. Neurol Clin 2008; 26: 181–94

    Article  PubMed  Google Scholar 

  5. Glaister M. Multiple sprint work: physiological responses, mechanisms of fatigue and the influence of aerobic fitness. Sports Med 2005; 35: 757–77

    Article  PubMed  Google Scholar 

  6. Spencer M, Bishop D, Dawson B, et al. Physiological and metabolic responses of repeated-sprint activities:specificto field-based team sports. Sports Med 2005; 35: 1025–44

    Article  PubMed  Google Scholar 

  7. Bishop D, Spencer M, Duffield R, et al. The validity of a repeated sprint ability test. J Sci Med Sport 2001; 4: 19–29

    Article  PubMed  CAS  Google Scholar 

  8. Fitzsimons M, Dawson B, Ward D, et al. Cycling and running tests of repeated sprint ability. Aus J Sci Med Sport 1993; 25: 82–7

    Google Scholar 

  9. Spencer M, Lawrence S, Rechichi C, et al. Time-motion analysis of elite field hockey, with special reference to repeated-sprint activity. J Sports Sci 2004; 22: 843–50

    Article  PubMed  Google Scholar 

  10. Spencer M, Rechichi C, Lawrence S, et al. Time-motion analysis of elite field hockey during several games in succession:a tournament scenario. J Sci Med Sport 2005; 8: 382–91

    Article  PubMed  CAS  Google Scholar 

  11. Stolen T, Chamari K, Castagna C, et al. Physiology of soccer: an update. Sports Med 2005; 35: 501–36

    Article  PubMed  Google Scholar 

  12. Buchheit M, Mendez-Villanueva A, Simpson BM, et al. Repeated-sprint sequences during youth soccer matches. Int J Sports Med 2010; 31: 709–16

    Article  PubMed  CAS  Google Scholar 

  13. Ball D, Burrows C, Sargeant AJ. Human power output during repeated sprint cycle exercise: the influence of thermalstress. Eur J Appl Physiol Occup Physiol 1999; 79: 360–6

    Article  PubMed  CAS  Google Scholar 

  14. Bogdanis GC, Nevill ME, Boobis LH, et al. Contribution of phosphocreatine and aerobic metabolism to energysupply during repeated sprint exercise. J Appl Physiol 1996; 80: 876–84

    PubMed  CAS  Google Scholar 

  15. Bogdanis GC, Nevill ME, Boobis LH, et al. Recovery of power output and muscle metabolites following 30 s ofmaximal sprint cycling in man. J Physiol 1995; 482 (Pt2): 467–80

    PubMed  CAS  Google Scholar 

  16. Balsom PD, Seger JY, Sjodin B, et al. Maximal-intensity intermittent exercise: effect of recovery duration. Int JSports Med 1992; 13: 528–33

    Article  CAS  Google Scholar 

  17. Duffield R, King M, Skein M. Recovery of voluntary and evoked muscle performance following intermittent-sprintexercise in the heat. Int J Sports Physiol Perform 2009; 4: 254–68

    PubMed  Google Scholar 

  18. Balsom PD, Seger JY, Sjodin B, et al. Physiological responses to maximal intensity intermittent exercise. EurJ Appl Physiol Occup Physiol 1992; 65: 144–9

    Article  CAS  Google Scholar 

  19. Bishop D, Claudius B. Effects of induced metabolic alkalosis on prolonged intermittent-sprint performance. Med Sci Sports Exerc 2005; 37: 759–67

    Article  PubMed  CAS  Google Scholar 

  20. Bishop D, Edge J, Davis C, et al. Induced metabolic alkalosis affects muscle metabolism and repeated-sprint ability. Med Sci Sports Exerc 2004; 36: 807–13

    PubMed  CAS  Google Scholar 

  21. Mendez-Villanueva A, Hamer P, Bishop D. Fatigue in repeated- sprint exercise is related to muscle power factorsand reduced neuromuscular activity. Eur J Appl Physiol 2008; 103: 411–9

    Article  PubMed  Google Scholar 

  22. Gaitanos GC, Williams C, Boobis LH, et al. Human muscle metabolism during intermittent maximal exercise. J Appl Physiol 1993; 75: 712–9

    PubMed  CAS  Google Scholar 

  23. Balsom PD, Gaitanos GC, Söderlund K, et al. Highintensity exercise and muscle glycogen availability in humans. Acta Physiol Scand 1999; 165: 337–45

    Article  PubMed  CAS  Google Scholar 

  24. Hautier CA, Arsac LM, Deghdegh K, et al. Influence of fatigue on EMG/force ratio and cocontraction in cycling. Med Sci Sports Exerc 2000; 32: 839–43

    Article  PubMed  CAS  Google Scholar 

  25. Yquel RJ, Arsac LM, Thiaudie`re E, et al. Effect of creatine supplementation on phosphocreatine resynthesis, inorganicphosphate accumulation and pH during intermittentmaximal exercise. J Sports Sci 2002; 20: 427–37

    Article  PubMed  CAS  Google Scholar 

  26. Bishop D, Edge J, Goodman C. Muscle buffer capacity and aerobic fitness are associated with repeated-sprint abilityin women. Eur J Appl Physiol 2004; 92: 540–7

    Article  PubMed  Google Scholar 

  27. Racinais S, Bishop D, Denis R, et al. Muscle deoxygenation and neural drive to the muscle during repeated sprintcycling. Med Sci Sports Exerc 2007; 39: 268–74

    Article  PubMed  Google Scholar 

  28. Buchheit M, Laursen PB, Ahmaidi S. Parasympathetic reactivation after repeated sprint exercise. Am J Physiol Heart Circ Physiol 2007; 293: H133–41

    Article  PubMed  CAS  Google Scholar 

  29. Smith KJ, Billaut F. Influence of cerebral and muscle oxygenation on repeated-sprint ability. Eur J Appl Physiol 2010; 109: 989–99

    Article  PubMed  Google Scholar 

  30. Lippi M. UEFA Newsletter for coaches. 2007; 4–7 [online]. Available from URL: http://www.uefa.com/newsfiles/493216.pdf [Accessed 2011 Jun 17]

    Google Scholar 

  31. Rampinini E, Bishop D, Marcora SM, et al. Validity of simple field tests as indicators of match-related physicalperformance in top-level professional soccer players. IntJ Sports Med 2007; 28: 228–35

    Article  CAS  Google Scholar 

  32. Krustrup P, Zebis M, Jensen JM, et al. Game-induced fatigue patterns in elite female soccer. J Strength Cond Res 2010; 24: 437–41

    Article  PubMed  Google Scholar 

  33. Mohr M, Krustrup P, Bangsbo J. Match performance of high-standard soccer players with special reference to developmentof fatigue. J Sports Sci 2003; 21: 519–28

    Article  PubMed  Google Scholar 

  34. Krustrup P, Mohr M, Ellingsgaard H, et al. Physical demands during an elite female soccer game: importance oftraining status. Med Sci Sports Exerc 2005; 37: 1242–8

    Article  PubMed  Google Scholar 

  35. Trapattoni G. Coaching high performance soccer. Spring City (PA): Reedswain Inc., 1999

    Google Scholar 

  36. Paton CD, Hopkins WG, Vollebregt L. Little effect of caffeine ingestion on repeated sprints in team-sport athletes. Med Sci Sports Exerc 2001; 33: 822–5

    PubMed  CAS  Google Scholar 

  37. Mohr M, Krustrup P, Nybo L, et al. Muscle temperature and sprint performance during soccer matches: beneficialeffect of re-warm-up at half-time. Scand. J Med Sci Sports 2004; 14: 156–62

    Article  CAS  Google Scholar 

  38. Krustrup P, Mohr M, Steensberg A, et al. Muscle and blood metabolites during a soccer game: implications forsprint performance. Med Sci Sports Exerc 2006; 38: 1165–74

    Article  PubMed  CAS  Google Scholar 

  39. Enoka RM, Stuart DG. Neurobiology of muscle fatigue. J Appl Physiol 1992; 72: 1631–48

    Article  PubMed  CAS  Google Scholar 

  40. Bishop D, Girard O and. Repeated sprint ability. Part II: recommendations for training. Sports Med. In press

  41. Racinais S, Connes P, Bishop D, et al. Morning versus evening power output and repeated-sprint ability. Chronobiol Int 2005; 22: 1029–39

    Article  PubMed  Google Scholar 

  42. Spencer M, Fitzsimons M, Dawson B, et al. Reliability of a repeated-sprint test for field-hockey. J Sci Med Sport 2006; 9: 181–4

    Article  PubMed  CAS  Google Scholar 

  43. Glaister M, Howatson G, Pattison JR, et al. The reliability and validity of fatigue measures during multiple — sprintwork: an issue revisited. J Strength Cond Res 2008; 22: 1597–601

    Article  PubMed  Google Scholar 

  44. Pyne DB, Saunders PU, Montgomery PG, et al. Relationships between repeated sprint testing, speed, and endurance. J Strength Cond Res 2008; 22: 1633–7

    Article  PubMed  Google Scholar 

  45. Mohr M, Krustrup P, Nielsen JJ, et al. Effect of two different intense training regimens on skeletal muscle iontransport proteins and fatigue development. Am J Physiol Regul Integr Comp Physiol 2007; 292: R1594–602

    Article  PubMed  CAS  Google Scholar 

  46. Racinais S, Perrey S, Denis R, et al. Maximal power, but not fatigability, is greater during repeated sprints performedin the afternoon. Chronobiol Int 2010; 27: 855–64

    Article  PubMed  Google Scholar 

  47. Bishop D, Lawrence S, Spencer M. Predictors of repeatedsprint ability in elite female hockey players. J Sci Med Sport 2003; 6: 199–209

    Article  PubMed  CAS  Google Scholar 

  48. Hamilton AL, Nevill ME, Brooks S, et al. Physiological responses to maximal intermittent exercise: differencesbetween endurance-trained runners and games players. J Sports Sci 1991; 9: 371–82

    Article  PubMed  CAS  Google Scholar 

  49. Yanagiya T, Kanehisa H, Kouzaki M, et al. Effect of gender on mechanical power output during repeated bouts ofmaximal running in trained teenagers. Int J Sports Med 2003; 24: 304–10

    Article  PubMed  CAS  Google Scholar 

  50. Mendez-Villanueva A, Hamer P, Bishop D. Fatigue responses during repeated sprints matched for initial mechanicaloutput. Med Sci Sports Exerc 2007; 39: 2219–25

    Article  PubMed  Google Scholar 

  51. Bishop D, Edge J. Determinants of repeated-sprint ability in females matched for single-sprint performance. EurJ Appl Physiol 2006; 97: 373–9

    Article  Google Scholar 

  52. Falgairette G, Billaut F, Giacomoni M, et al. Effect of inertia on performance and fatigue pattern during repeatedcycle sprints in males and females. Int J Sports Med 2004; 25: 235–40

    Article  PubMed  CAS  Google Scholar 

  53. Matsuura R, Arimitsu T, Yunoki T, et al. Effects of resistive load on performance and surface EMG activityduring repeated cycling sprints on a non-isokinetic cycleergometer. Br J Sports Med. Epub 2010 Dec 14

    Google Scholar 

  54. Little T, Williams AG. Effects of sprint duration and exercise: rest ratio on repeated sprint performance andphysiological responses in professional soccer players. J Strength Cond Res 2007; 21: 646–8

    PubMed  Google Scholar 

  55. Buchheit M, Cormie P, Abbiss CR, et al. Muscle deoxygenation during repeated sprint running: Effect ofactive vs. passive recovery. Int J Sports Med 2009; 30: 418–25

    Article  PubMed  CAS  Google Scholar 

  56. Castagna C, Abt G, Manzi V, et al. Effect of recovery mode on repeated sprint ability in young basketball players. J Strength Cond Res 2008; 22: 923–9

    Article  PubMed  Google Scholar 

  57. Hamlin MJ. The effect of contrast temperature water therapy on repeated sprint performance. J Sci Med Sport 2007; 10: 398–402

    Article  PubMed  Google Scholar 

  58. Spencer M, Bishop D, Dawson B, et al. Metabolism and performance in repeated cycle sprints: active versus passiverecovery. Med Sci Sports Exerc 2006; 38: 1492–9

    Article  PubMed  Google Scholar 

  59. Billaut F, Basset FA. Effect of different recovery patterns on repeated-sprint ability and neuromuscular responses. J Sports Sci 2007; 25: 905–13

    Article  PubMed  Google Scholar 

  60. Glaister M, Stone MH, Stewart AM, et al. The influence of recovery duration on multiple sprint cycling performance. J Strength Cond Res 2005; 19: 831–7

    PubMed  Google Scholar 

  61. Glaister M, Witmer C, Clarke DW, et al. Familiarization, reliability, and evaluation of a multiple sprint running testusing self-selected recovery periods. J Strength Cond Res 2010; 24 (12): 3296–301

    Article  PubMed  Google Scholar 

  62. Holmyard DJ, Cheetham ME, Lakomy HK, et al. Effect of recovery duration on performance during multipletreadmill sprints. In: Reilly T, Lees A, Davids K, et al., editors. Science and football. London: F & N Spon, 1988: 134–42

    Google Scholar 

  63. Ratel S, Bedu M, Hennegrave A, et al. Effects of age and recovery duration on peak power output during repeatedcycling sprints. Int J Sports Med 2002; 23: 397–402

    Article  PubMed  CAS  Google Scholar 

  64. Ratel S, Williams CA, Oliver J, et al. Effects of age and recovery duration on performance during multiple treadmillsprints. Int J Sports Med 2006; 27: 1–8

    Article  PubMed  CAS  Google Scholar 

  65. Spencer M, Dawson B, Goodman C, et al. Performance and metabolism in repeated sprint exercise: effect of recoveryintensity. Eur J Appl Physiol 2008; 103: 545–52

    Article  PubMed  CAS  Google Scholar 

  66. Signorile JF, Ingalls C, Tremblay LM. The effects of active and passive recovery on short-term, high intensity poweroutput. Can J Appl Physiol 1993; 18: 31–42

    Article  PubMed  CAS  Google Scholar 

  67. Jougla A, Micallef JP, Mottet D. Effects of active vs. passive recovery on repeated rugby-specific exercises. J Sci Med Sport 2010; 13: 350–5

    Article  PubMed  CAS  Google Scholar 

  68. Sim AY, Dawson BT, Guelfi KJ, et al. Effects of static stretching in warm-up on repeated sprint performance. J Strength Cond Res 2009; 23: 2155–62

    Article  PubMed  Google Scholar 

  69. Wong PL, Lau PW, Mao de W, et al. Three days of static stretching within a warm-up does not affect repeatedsprintability in youth soccer players. J Strength Cond Res 2011; 25 (3): 838–45

    PubMed  Google Scholar 

  70. Meckel Y, Gottlieb R, Eliakim A. Repeated sprint tests in young basketball players at different game stages. Eur JAppl Physiol 2009; 107: 273–9

    Article  Google Scholar 

  71. Glaister M. Multiple-sprint work: methodological, physiological, and experimental issues. Int J Sports Physiol Perform 2009; 3: 107–12

    Google Scholar 

  72. Billaut F, Smith K. Sex alters impact of repeated bouts of sprint exercise on neuromuscular activity in trained athletes. Appl Physiol Nutr Metab 2009; 34: 689–99

    Article  PubMed  Google Scholar 

  73. Billaut F, Bishop D. Muscle fatigue in males and females during multiple-sprint exercise. Sports Med 2009; 39: 257–78

    Article  PubMed  Google Scholar 

  74. Abrantes C, Macas V, Sampaio J. Variation in football player’s sprint test performance across different ages andlevels of competition. J Sports Sci Med 2004; 3: 44–9

    Google Scholar 

  75. Mujika I, Spencer M, Santisteban J, et al. Age-related differences in repeated-sprint ability in highly trained youthfootball players. J Sports Sci 2009; 27: 1581–90

    Article  PubMed  Google Scholar 

  76. Aziz AR, Mukherjee S, Chia MY, et al. Validity of the running repeated sprint ability test among playing positionsand level of competitiveness in trained soccer players. Int J Sports Med 2008; 29: 833–8

    Article  PubMed  CAS  Google Scholar 

  77. Rampinini E, Sassi A, Morelli A, et al. Repeated-sprint ability in professional and amateur soccer players. Appl Physiol Nutr Metab 2009; 34: 1048–54

    Article  PubMed  CAS  Google Scholar 

  78. Connes P, Racinais S, Sra F, et al. Does the pattern of repeated sprint ability differ between sickle cell trait carriersand healthy subjects. Int J Sports Med 2006; 27: 937–42

    Article  PubMed  CAS  Google Scholar 

  79. Giacomoni M, Billaut F, Falgairette G. Effects of the time of day on repeated all-out cycle performance and shorttermrecovery patterns. Int J Sports Med 2006; 27: 468–74

    Article  PubMed  CAS  Google Scholar 

  80. Fraser SF, Li JL, Carey MF, et al. Fatigue depresses maximal in vitro skeletal muscle Na(+)-K(+)-ATPase activityin untrained and trained individuals. J Appl Physiol 2002; 93: 1650–9

    PubMed  CAS  Google Scholar 

  81. Clausen T, Nielsen OB, Harrison AP, et al. The Na+,K+ pump and muscle excitability. Acta Physiol Scand 1998; 162: 183–90

    Article  PubMed  CAS  Google Scholar 

  82. Juel C, Pilegaard H, Nielsen JJ, et al. Interstitial K(+) in human skeletal muscle during and after dynamic gradedexercise determined by microdialysis. Am J Physiol Regul Integr Comp Physiol 2000; 278: R400–6

    PubMed  CAS  Google Scholar 

  83. Ruff RL, Simoncini L, Stuhmer W. Slow sodium channel inactivation in mammalian muscle: a possible role in regulatingexcitability. Muscle Nerve 1988; 11: 502–10

    Article  PubMed  CAS  Google Scholar 

  84. Fuglevand AJ, Zackowski KM, Huey KA, et al. Impairment of neuromuscular propagation during human fatiguingcontractions at submaximal forces. J Physiol 1993; 460: 549–72

    PubMed  CAS  Google Scholar 

  85. Perrey S, Racinais S, Saimouaa K, et al. Neural and muscular adjustments following repeated running sprints. Eur J Appl Physiol 2010; 109: 1027–36

    Article  PubMed  Google Scholar 

  86. Hultman E, Sjoholm H. Energy metabolism and contraction force of human skeletal muscle in situ during electricalstimulation. J Physiol 1983; 345: 525–32

    PubMed  CAS  Google Scholar 

  87. Dawson B, Goodman C, Lawrence S, et al. Muscle phosphocreatine repletion following single and repeated shortsprint efforts. Scand J Med Sci Sports 1997; 7: 206–13

    Article  PubMed  CAS  Google Scholar 

  88. Tomlin DL, Wenger HA. The relationship between aerobic fitness and recovery from high intensity intermittent exercise. Sports Med 2001; 31: 1–11

    Article  PubMed  CAS  Google Scholar 

  89. Soderlund K, Hultman E. ATP and phosphocreatine changes in single human muscle fibers after intense electricalstimulation. Am J Physiol 1991; 261: E737–41

    PubMed  CAS  Google Scholar 

  90. Karatzaferi C, de Haan A, van Mechelen W, et al. Metabolismchanges in single human fibres during brief maximalexercise. Exp Physiol 2001; 86: 411–5

    Article  PubMed  CAS  Google Scholar 

  91. Sahlin K, Ren JM. Relationship of contraction capacity to metabolic changes during recovery from a fatiguing contraction. J Appl Physiol 1989; 67: 648–54

    PubMed  CAS  Google Scholar 

  92. Yoshida T, Watari H. 31 P-nuclear magnetic resonance spectroscopy study of the time course of energy metabolism during exercise and recovery. Eur J Appl Physiol Occup Physiol 1993; 66: 494–9

    Article  PubMed  CAS  Google Scholar 

  93. Gaul CA, Docherty D, Wolski LA. The relationship between aerobic fitness and intermittent high intensityanaerobic performance in active females [abstract]. CanJ Appl Physiol 1997; 22 Suppl.: 19P

    Google Scholar 

  94. Boobis L, Williams C, Wootton SA. Human muscle metabolism during brief maximal exercise [abstract]. J Physiol 1982; 338: 21–2P

    Google Scholar 

  95. McGawley K, Bishop D. Anaerobic and aerobic contribution to two, 5 — 6-s repeated-sprint bouts. Coach Sport Sci J 2008; 3: 52

    Google Scholar 

  96. Parolin ML, Chesley A, Matsos MP, et al. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximalintermittent exercise. Am J Physiol 1999; 277: E890–900

    PubMed  CAS  Google Scholar 

  97. Dupont G, Millet GP, Guinhouya C, et al. Relationship between oxygen uptake kinetics and performance in repeatedrunning sprints. Eur J Appl Physiol 2005; 95: 27–34

    Article  PubMed  CAS  Google Scholar 

  98. Edge J, Bishop D, Goodman C, et al. Effects of high- and moderate-intensity training on metabolism and repeatedsprints. Med Sci Sports Exerc 2005; 37: 1975–82

    Article  PubMed  Google Scholar 

  99. Balsom PD, Ekblom B, Sjodin B. Enhanced oxygen availability during high intensity intermittent exercise decreasesanaerobic metabolite concentrations in blood. Acta Physiol Scand 1994; 150: 455–6

    Article  PubMed  CAS  Google Scholar 

  100. Bishop D, Spencer M. Determinants of repeated-sprint ability in well-trained team-sport athletes and endurancetrainedathletes. J Sports Med Phys Fitness 2004; 44: 1–7

    PubMed  CAS  Google Scholar 

  101. Brown PI, Hughes MG, Tong RJ. Relationship between VO(2max) and repeated sprint ability using non-motorisedtreadmill ergometry. J Sports Med Phys Fitness 2007; 47: 186–90

    PubMed  CAS  Google Scholar 

  102. Dawson B, Fitzsimons M, Ward D. The relationship of repeated sprinting ability to aerobic power and performancemeasures of anaerobic capacity and power. Aus JSci Med Sport 1993; 25: 88–93

    Google Scholar 

  103. Aziz AR, Mukherjee S, Chia MY, et al. Relationship between measured maximal oxygen uptake and aerobic enduranceperformance with running repeated sprint ability in youngelite soccer players. J Sports Med Phys Fitness 2007; 47: 401–7

    PubMed  CAS  Google Scholar 

  104. Castagna C, Manzi V, D’Ottavio S, et al. Relation between maximal aerobic power and the ability to repeat sprints inyoung basketball players. J Strength Cond Res 2007; 21: 1172–6

    PubMed  Google Scholar 

  105. Lane KN, Wenger HA, Blair C. Relationship between maximal aerobic power and the ability to recover fromrepeated, high intensity, on ice sprints in male ice hockeyplayers [abstract]. Can. J Appl Physiol 1997; 22: 35

    Google Scholar 

  106. McMahon S, Wenger HA. The relationship between aerobic fitness and both power output and subsequent recoveryduring maximal intermittent exercise. J Sci Med Sport 1998; 1: 219–27

    Article  PubMed  CAS  Google Scholar 

  107. Wadley G, Le Rossignol P. The relationship between repeated sprint ability and the aerobic and anaerobic energysystems. J Sci Med Sport 1998; 1: 100–10

    Article  PubMed  CAS  Google Scholar 

  108. Aziz AR, Chia M, Teh KC. The relationship between maximal oxygen uptake and repeated sprint performanceindices in field hockey and soccer players. J Sports Med Phys Fitness 2000; 40: 195–200

    PubMed  CAS  Google Scholar 

  109. Bassett Jr DR, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc 2000; 32: 70–84

    PubMed  Google Scholar 

  110. Thomas C, Sirvent P, Perrey S, et al. Relationships between maximal muscle oxidative capacity and blood lactate removalafter supramaximal exercise and fatigue indexes inhumans. J Appl Physiol 2004; 97: 2132–8

    Article  PubMed  CAS  Google Scholar 

  111. Billaut F, Smith K. Prolonged repeated-sprint ability is related to arterial O2 desaturation in men. Int J Sports Physiol Perform 2010; 5: 197–209

    PubMed  Google Scholar 

  112. Dupont G, McCall A, Prieur F, et al. Faster oxygen uptake kinetics during recovery is related to better repeatedsprinting ability. Eur J Appl Physiol 2010; 110 (3): 627–34

    Article  PubMed  Google Scholar 

  113. da Silva JF, Guglielmo LG, Bishop D. Relationship between different measures of aerobic fitness and repeatedsprintability in elite soccer players. J Strength Cond Res 2010; 24: 2115–21

    Article  PubMed  Google Scholar 

  114. Buchheit M, Ufland P. Effect of endurance training on performance and muscle reoxygenation rate during repeatedsprintrunning. Eur J Appl Physiol 2011; 111 (2): 293–301

    Article  PubMed  Google Scholar 

  115. Spriet LL, Lindinger MI, McKelvie RS, et al. Muscle glycogenolysis and H+ concentration during maximal intermittentcycling. J Appl Physiol 1989; 66: 8–13

    PubMed  CAS  Google Scholar 

  116. Thomas C, Perrey S, Lambert K, et al. Monocarboxylate transporters, blood lactate removal after supramaximalexercise, and fatigue indexes in humans. J Appl Physiol 2005; 98: 804–9

    Article  PubMed  CAS  Google Scholar 

  117. Matsuura R, Arimitsu T, Kimura T, et al. Effect of oral administration of sodium bicarbonate on surface EMG activity during repeated cycling sprints. Eur J Appl Physiol 2007; 101: 409–17

    Article  PubMed  CAS  Google Scholar 

  118. Gaitanos GC, Nevill ME, Brooks S, et al. Repeated bouts of sprint running after induced alkalosis. J Sports Sci 1991; 9: 355–70

    Article  PubMed  CAS  Google Scholar 

  119. Vollestad NK. Measurement of human muscle fatigue. J Neurosci Methods 1997; 74: 219–27

    Article  PubMed  CAS  Google Scholar 

  120. Dutka TL, Lamb GD. Effect of low cytoplasmic [ATP] on excitation-contraction coupling in fast-twitch muscle fibresof the rat. J Physiol 2004; 560: 451–68

    Article  PubMed  CAS  Google Scholar 

  121. Westerblad H, Allen DG, Lannergren J. Muscle fatigue: lactic acid or inorganic phosphate the major cause? News Physiol Sci 2002; 17: 17–21

    PubMed  CAS  Google Scholar 

  122. Ross A, Leveritt M, Riek S. Neural influences on sprint running: training adaptations and acute responses. Sports Med 2001; 31: 409–25

    Article  PubMed  CAS  Google Scholar 

  123. Billaut F, Basset FA, Falgairette G. Muscle coordination changes during intermittent cycling sprints. Neurosci Lett 2005; 380: 265–9

    Article  PubMed  CAS  Google Scholar 

  124. Billaut F, Basset FA, Giacomoni M, et al. Effect of highintensity intermittent cycling sprints on neuromuscularactivity. Int J Sports Med 2006; 27: 25–30

    Article  PubMed  CAS  Google Scholar 

  125. Matsuura R, Ogata H, Yunoki T, et al. Effect of blood lactate concentration and the level of oxygen uptake immediatelybefore a cycling sprint on neuromuscular activationduring repeated cycling sprints. J Physiol Anthropol 2006; 25: 267–73

    Article  PubMed  Google Scholar 

  126. Farina D, Merletti R, Enoka RM. The extraction of neural strategies from the surface EMG. J Appl Physiol 2004; 96: 1486–95

    Article  PubMed  Google Scholar 

  127. Pasquet B, Carpentier A, Duchateau J, et al. Muscle fatigue during concentric and eccentric contractions. Muscle Nerve 2000; 23: 1727–35

    Article  PubMed  CAS  Google Scholar 

  128. Kinugasa R, Akima H, Ota A, et al. Short-term creatine supplementation does not improve muscle activation orsprint performance in humans. Eur J Appl Physiol 2004; 91: 230–7

    Article  PubMed  CAS  Google Scholar 

  129. Missenard O, Mottet D, Perrey S. Factors responsible for force steadiness impairment with fatigue. Muscle Nerve 2009; 40: 1019–32

    Article  PubMed  Google Scholar 

  130. Kibler WB, Safran MR. Musculoskeletal injuries in the young tennis player. Clin. Sports Med 2000; 19: 781–92

    Article  PubMed  CAS  Google Scholar 

  131. Amann M, Dempsey JA. Locomotor muscle fatigue modifies central motor drive in healthy humans and imposesa limitation to exercise performance. J Physiol 2008; 586: 161–73

    Article  PubMed  CAS  Google Scholar 

  132. Sinoway LI, Hill JM, Pickar JG, et al. Effects of contraction and lactic acid on the discharge of group III muscleafferents in cats. J Neurophysiol 1993; 69: 1053–9

    PubMed  CAS  Google Scholar 

  133. Duchateau J, Balestra C, Carpentier A, et al. Reflex regulation during sustained and intermittent submaximalcontractions in humans. J Physiol 2002; 541: 959–67

    Article  PubMed  CAS  Google Scholar 

  134. Racinais S, Girard O, Micallef JP, et al. Failed excitability of spinal motoneurons induced by prolonged runningexercise. J Neurophysiol 2007; 97: 596–603

    Article  PubMed  CAS  Google Scholar 

  135. Hunter AM, St Clair Gibson, Lambert MI, et al. Effects of supramaximal exercise on the electromyographic signal. Br J Sports Med 2003; 37: 296–9

    Article  PubMed  CAS  Google Scholar 

  136. Bundle MW, Ernst CL, Bellizzi MJ, et al. Ametabolic basis for impaired muscle force production and neuromuscularcompensation during sprint cycling. Am J Physiol Regul Integr Comp Physiol 2006; 291: R1457–64

    Article  CAS  Google Scholar 

  137. Szubski C, Burtscher M, Loscher WN. The effects of shortterm hypoxia on motor cortex excitability and neuromuscularactivation. J Appl Physiol 2006; 101: 1673–7

    Article  PubMed  Google Scholar 

  138. Dillon GH, Waldrop TG. In vitro responses of caudal hypothalamic neurons to hypoxia and hypercapnia. Neuroscience 1992; 51: 941–50

    Article  PubMed  CAS  Google Scholar 

  139. Zehr PE. Considerations for use of the Hoffmann reflex in exercise studies. Eur J Appl Physiol 2002; 86: 455–68

    Article  PubMed  Google Scholar 

  140. Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 2001; 81: 1725–89

    PubMed  CAS  Google Scholar 

  141. Meeusen R, Watson P, Hasegawa H, et al. Central fatigue: the serotonin hypothesis and beyond. Sports Med 2006; 36: 881–909

    Article  PubMed  Google Scholar 

  142. Kalmar JM, Cafarelli E. Central excitability does not limit postfatigue voluntary activation of quadriceps femoris. J Appl Physiol 2006; 100: 1757–64

    Article  PubMed  CAS  Google Scholar 

  143. Sidhu SK, Bentley DJ, Carroll TJ. Locomotor exercise induces long-lasting impairments in the capacity of thehuman motor cortex to voluntarily activate knee extensormuscles. J Appl Physiol 2009; 106: 556–65

    Article  PubMed  Google Scholar 

  144. Gandevia SC, Petersen N, Butler JE, et al. Impaired response of human motoneurones to corticospinal stimulationafter voluntary exercise. J Physiol 1999; 521 (Pt3): 749–59

    Article  PubMed  CAS  Google Scholar 

  145. Petersen NT, Taylor JL, Butler JE, et al. Depression of activity in the corticospinal pathway during human motorbehavior after strong voluntary contractions. J Neurosci 2003; 23: 7974–80

    PubMed  CAS  Google Scholar 

  146. Bigland-Ritchie B, Johansson R, Lippold OC, et al. Contractile speed and EMG changes during fatigue of sustainedmaximal voluntary contractions. J Neurophysiol 1983; 50: 313–24

    PubMed  CAS  Google Scholar 

  147. Bigland-Ritchie B, Woods JJ. Changes in muscle contractile properties and neural control during humanmuscular fatigue. Muscle Nerve 1984; 7: 691–9

    Article  PubMed  CAS  Google Scholar 

  148. Allen DG, Lamb GD, Westerblad H. Impaired calcium release during fatigue. J Appl Physiol 2008; 104: 296–305

    Article  PubMed  CAS  Google Scholar 

  149. Casey A, Constantin-Teodosiu D, Howell S, et al. Metabolic response of type I and II muscle fibers during repeated bouts of maximal exercise in humans. Am. J Physiol 1996; 271: E38–43

    Google Scholar 

  150. Wilson GJ, Murphy AJ. The use of isometric tests of muscular function in athletic assessment. Sports Med 1996; 22: 19–37

    Article  PubMed  CAS  Google Scholar 

  151. Farley CT, Blickhan R, Saito J, et al. Hopping frequency in humans: a test of how springs set stride frequency inbouncing gaits. J Appl Physiol 1991; 71: 2127–32

    PubMed  CAS  Google Scholar 

  152. Chelly SM, Denis C. Leg power and hopping stiffness: relationship with sprint running performance. Med Sci Sports Exerc 2001; 33: 326–33

    PubMed  CAS  Google Scholar 

  153. Morin JB, Jeannin T, Chevallier B, et al. Spring-mass model characteristics during sprint running: correlationwith performance and fatigue-induced changes. Int JSports Med 2006; 27: 158–65

    Article  Google Scholar 

  154. Girard O, Micallef J-P, Millet GP. Changes in spring-mass model characteristics during repeated running sprints. Eur J Appl Physiol 2011; 111 (1): 125–34

    Article  PubMed  Google Scholar 

  155. Clark RA. The effect of training status on inter-limb joint stiffness regulation during repeated maximal sprints. J Sci Med Sport 2009; 12: 406–10

    Article  PubMed  Google Scholar 

  156. Morris JG, Nevill ME, Williams C. Physiological and metabolic responses of female games and endurance athletesto prolonged, intermittent, high-intensity running at 30degrees and 16 degrees C ambient temperatures. Eur JAppl Physiol 2000; 81: 84–92

    Article  CAS  Google Scholar 

  157. Brosnan MJ, Martin DT, Hahn AG, et al. Impaired interval exercise responses in elite female cyclists at moderatesimulated altitude. J Appl Physiol 2000; 89: 1819–24

    PubMed  CAS  Google Scholar 

  158. Ogawa T, Hayashi K, Ichinose M, et al. Metabolic response during intermittent graded sprint running inmoderatehypobaric hypoxia in competitive middle-distance runners. Eur J Appl Physiol 2007; 99: 39–46

    Article  PubMed  CAS  Google Scholar 

  159. Gray SR, De Vito G, Nimmo MA, et al. Skeletal muscle ATP turnover and muscle fiber conduction velocity areelevated at higher muscle temperatures during maximalpower output development in humans. Am J Physiol Regul Integr Comp Physiol 2006; 290: R376–82

    Article  CAS  Google Scholar 

  160. Bishop D, Maxwell NS. Effects of active warm up on thermoregulation and intermittent-sprint performance inhot conditions. J Sci Med Sport 2009; 12: 196–204

    Article  PubMed  Google Scholar 

  161. Drust B, Rasmussen P, Mohr M, et al. Elevations in core and muscle temperature impairs repeated sprint performance. Acta Physiol Scand 2005; 183: 181–90

    Article  PubMed  CAS  Google Scholar 

  162. Maxwell NS, McKenzie RW, Bishop D. Influence of hypohydration on intermittent sprint performance in theheat. Int J Sports Physiol Perform 2009; 4: 54–67

    PubMed  Google Scholar 

  163. Balsom PD, Gaitanos GC, Ekblom B, et al. Reduced oxygen availability during high intensity intermittent exercise impairsperformance. Acta Physiol Scand 1994; 152: 279–85

    Article  PubMed  CAS  Google Scholar 

  164. Hogan MC, Richardson RS, Haseler LJ. Human muscle performance and PCr hydrolysis with varied inspiredoxygen fractions: a 31P-MRS study. J Appl Physiol 1999; 86: 1367–73

    PubMed  CAS  Google Scholar 

  165. Amann M, Kayser B. Nervous system function during exercise in hypoxia. High Alt Med Biol 2009; 10: 149–64

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Girard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Girard, O., Mendez-Villanueva, A. & Bishop, D. Repeated-Sprint Ability — Part I. Sports Med 41, 673–694 (2011). https://doi.org/10.2165/11590550-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11590550-000000000-00000

Keywords

Navigation