Skip to main content

Advertisement

Log in

Let Them Roam Free?

Physiological and Psychological Evidence for the Potential of Self-Selected Exercise Intensity in Public Health

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

In recommending physical activity for public health, authors have advocated either an approach in which the participant is to follow a prescription developed by a professional or an approach based on the participants’ own preferences. This review explores the potential for convergence between these two approaches by examining: (i) whether the exercise intensity that participants select is within the range recommended by the American College of Sports Medicine for the development and maintenance of cardiorespiratory fitness and health; (ii) what is known about the determinants of self-selected intensity and the factors underlying interindividual differences; and (iii) the psychological consequences of imposing a level of intensity compared with allowing participants to select their preferred level. The results indicate that, among middle-aged or older, sedentary or obese participants, or those in cardiac rehabilitation, self-selected exercise intensities are, on average, within the recommended range. However, some individuals select levels well below the recommended range and others select near-maximal levels. Most individuals apparently select intensities proximal to their ventilatory or lactate threshold, presumably because higher intensities would reduce pleasure. The factors underlying the large interindividual differences in self-selected intensity remain poorly understood. Imposed intensities lead to declines in pleasure, even when they exceed the self-selected level by a small amount. These results demonstrate the compatibility of prescription-based and preference-based approaches. Public health practitioners can consider self-selected intensity as an appropriate option.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. World Health Organization. Annual global Move for Health initiative: a concept paper. Geneva: World Health Organization, 2003

  2. United States National Center for Health Statistics. Healthy people 2000 review, 1998‐1999. Hyattsville (MD): PublicHealth Service, 1999

  3. Barnes P, Heyman KM. Early release of selected estimates based on data from the January-June 2007 NationalHealth Interview Survey. Hyattsville (MD): National Center for Health Statistics, 2007

    Google Scholar 

  4. Pleis JR, Lethbridge-Çejku M. Summary health statistics for US adults ‐ National Health Interview Survey, 2006: vital and health statistics, 10 (235), 11-12. Hyattsville(MD): National Center for Health Statistics, 2007

    Google Scholar 

  5. Stamatakis E. Physical activity. In: Sproston K, Primatesta P, editors. Health survey for England 2003, vol. 2. London: The Stationery Office, 2004: 107–41

    Google Scholar 

  6. Armstrong T, Bauman A, Davies J. Physical activity patterns of Australian adults: results of the 1999 National Physical Activity Survey. Canberra (ACT): Australian Institute of Health and Welfare, 2000

    Google Scholar 

  7. Dishman RK, Buckworth J. Increasing physical activity: a quantitative synthesis. Med Sci Sports Exerc 1996; 28: 706–19

    Article  PubMed  CAS  Google Scholar 

  8. Marcus BH, Williams DM, Dubbert PM, et al. Physical activity intervention studies: what we know and what weneed to know. Circulation 2006; 114: 2739–52

    Article  PubMed  Google Scholar 

  9. Kahneman D. Objective happiness. In: Kahneman D, Diener E, Schwarz N, editors. Well-being: the foundationof hedonic psychology. New York (NY): Russell Sage Foundation, 1999: 3–25

    Google Scholar 

  10. Carels RA, Berger B, Darby L. The association between mood states and physical activity in postmenopausal,obese, sedentary women. J Aging Phys Act 2006; 14: 12–28

    PubMed  Google Scholar 

  11. Kiviniemi MT, Voss-Humke AM, Seifert AL. How do I feel about the behavior? The interplay of affective associationswith behaviors and cognitive beliefs as influences on physical activity behavior. Health Psychol 2007; 26: 152–8

    Google Scholar 

  12. Williams DM, Dunsiger S, Ciccolo JT, et al. Acute affective response to a moderate-intensity exercise stimulus predictsphysical activity participation 6 and 12 months later. Psychol Sport Exerc 2008; 9: 231–45

    Article  PubMed  Google Scholar 

  13. Karvonen MJ, Kentala E, Mustala O. The effects of training on heart rates: a “longitudinal” study. Ann Med Exp Biol Fenn 1957; 35: 307–10

    PubMed  CAS  Google Scholar 

  14. Swain DP, Franklin BA. Is there a threshold intensity for aerobic training in cardiac patients? Med Sci Sports Exerc 2002; 34: 1071–5

    Article  PubMed  Google Scholar 

  15. Greene B. Get with the program! Getting real about your weight, health, and emotional well-being. New York(NY): Simon & Schuster, 2002

    Google Scholar 

  16. Duncan GE, Sydeman SJ, Perri MG, et al. Can sedentary adults accurately recall the intensity of their physical activity? Prev Med 2001; 33: 18–26

    Article  PubMed  CAS  Google Scholar 

  17. Kollenbaum VE. A clinical method for the assessment of interoception of cardiovascular strain in CHD patients. J Psychophysiol 1994; 8: 121–30

    Google Scholar 

  18. Kollenbaum VE, Dahme B, Kirchner G. “Interoception” of heart rate, blood pressure, and myocardial metabolismduring ergometric work load in healthy young subjects. Biol Psychol 1996; 42: 183–97

    Article  PubMed  CAS  Google Scholar 

  19. Kosiek RM, Szymanski LM, Lox CL, et al. Self-regulation of exercise intensity in cardiac rehabilitation participants. Sports Med Train Rehabil 1999; 8: 359–68

    Article  Google Scholar 

  20. American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription. 7th ed. Philadelphia(PA): Lippincott, Williams, & Wilkins, 2006

  21. Koltyn KF, Morgan WP. Efficacy of perceptual versus heart rate monitoring in the development of endurance. Br J Sports Med 1992; 26: 132–4

    Article  PubMed  CAS  Google Scholar 

  22. Ilarraza H, Myers J, Kottman W, et al. An evaluation of training responses using self-regulation in a residential rehabilitationprogram. J Cardiopulm Rehabil 2004; 24: 27–33

    Article  PubMed  Google Scholar 

  23. Pate RR, Pratt M, Blair SN, et al. Physical activity and public health: a recommendation from the Centers forDisease Control and Prevention and the American Collegeof Sports Medicine. JAMA 1995; 273: 402–7

    Article  PubMed  CAS  Google Scholar 

  24. Haskell WL. Health consequences of physical activity: understanding and challenges regarding dose-response. Med Sci Sports Exerc 1989; 26: 649–60

    Google Scholar 

  25. Morris JN. Exercise versus heart attack: questioning the consensus? Res Q Exerc Sport 1996; 67: 216–20

    PubMed  CAS  Google Scholar 

  26. Yu S, Yarnell JWG, Sweetnam PM, et al. What level of physical activity protects against premature cardiovasculardeath? The Caerphilly study. Heart 2003; 89: 502–6

    Article  PubMed  CAS  Google Scholar 

  27. Swain DP, Franklin BA. Comparison of cardioprotective benefits of vigorous versus moderate intensity aerobicexercise. Am J Cardiol 2006; 97: 141–7

    Article  PubMed  Google Scholar 

  28. National Institutes of Health Consensus Development Panel on Physical Activity and Cardiovascular Health. Physicalactivity and cardio vascular health. JAMA 1996; 276: 241–6

    Google Scholar 

  29. O’Donovan G, Owen A, Bird SR, et al. Changes in cardiorespiratory fitness and coronary heart disease risk factorsfollowing 24 wk of moderate- or high-intensity exercise ofequal energy cost. J Appl Physiol 2005; 98: 1619–25

    Article  PubMed  Google Scholar 

  30. King AC, Castro C, Wilcox S, et al. Personal and environmental factors associated with physical inactivityamong different racial-ethnic groups of U.S. middle-agedand older-aged women. Health Psychol 2000; 19: 354–64

    Article  PubMed  CAS  Google Scholar 

  31. Jones F, Harris P, Waller H, et al. Adherence to an exercise prescription scheme: the role of expectations, self-efficacy,stage of change and psychological well-being. Br J Health Psychol 2005; 10: 359–78

    Article  PubMed  Google Scholar 

  32. Sears SR, Stanton AL. Expectancy-value constructs and expectancy violation as predictors of exercise adherence inpreviously sedentary women. Health Psychol 2001; 20: 326–33

    Article  PubMed  CAS  Google Scholar 

  33. Gibala MJ, McGee SL. Metabolic adaptations to shortterm high-intensity interval training: a little pain for a lotof gain? Exerc Sport Sci Rev 2008; 36: 58–63

    Article  PubMed  Google Scholar 

  34. King AC, Martin JE. Exercise adherence and maintenance. In: Durstine JL, King AC, Painter PL, et al, editors. ACSM’s resource manual for guidelines for exercise testingand prescription. 2nd ed. Philadelphia (PA): Lea & Febiger, 1993: 443–54

    Google Scholar 

  35. King AC, Taylor CB, Haskell WL, et al. Identifying strategies for increasing employee physical activity levels:findings from the Stanford/Lockheed/Exercise Survey. Health Educ Q 1990; 17: 269–85

    Article  PubMed  CAS  Google Scholar 

  36. Wilcox S, King AC, Brassington GS, et al. Physical activity preferences of middle-aged and older adults: a communityanalysis. J Aging Phys Act 1999; 7: 386–99

    Google Scholar 

  37. Lee C. Attitudes, knowledge, and stages of change: a survey of exercise patterns in older Australian women. Health Psychol 1993; 12: 476–80

    Article  PubMed  CAS  Google Scholar 

  38. Deci EL, Ryan RM. The “what” and “why” of goal pursuits: human needs and the self-determination of behavior. Psychol Inq 2000; 11: 227–68

    Article  Google Scholar 

  39. Daley AJ, Meynard IW. Preferred exercise mode and affective responses in physically active adults. Psychol Sport Exerc 2003; 4: 347–56

    Article  Google Scholar 

  40. Miller BM, Bartholomew JB, Springer BA. Post-exercise affect: the effect of mode preference. J Appl Sport Psychol 2005; 17: 263–72

    Article  Google Scholar 

  41. Parfitt G, Gledhill C. The effect of choice of exercise mode on psychological responses. Psychol Sport Exerc 2004; 5: 111–7

    Article  Google Scholar 

  42. Thompson CE, Wankel LM. The effects of perceived activity choice upon frequency of exercise behavior. J Appl Soc Psychol 1980; 10: 436–43

    Article  Google Scholar 

  43. Coleman KJ, Raynor HR, Mueller DM, et al. Providing sedentary adults with choices for meeting their walkinggoals. Prev Med 1999; 28: 510–9

    Article  PubMed  CAS  Google Scholar 

  44. Macfarlane DJ, Taylor LH, Cuddihy TF. Very short intermittent versus continuous bouts of activity in sedentaryadults. Prev Med 2006; 43: 332–6

    Article  PubMed  Google Scholar 

  45. Morgan WP. Methodological considerations. In: Morgan WP, editor. Physical activity and mental health. Washington,DC: Taylor & Francis, 1997: 3–32

    Google Scholar 

  46. Berger BG, Motl RW. Exercise and mood: a selective review and synthesis of research employing the Profile ofMood States. J Appl Sport Psychol 2000; 12: 69–92

    Article  Google Scholar 

  47. Dishman RK, Farquhar RP, Cureton KJ. Responses to preferred intensities of exertion in men differing in activitylevels. Med Sci Sports Exerc 1994; 26: 783–90

    Article  PubMed  CAS  Google Scholar 

  48. Dishman RK. Prescribing exercise intensity for healthy adults using perceived exertion. Med Sci Sports Exerc 1994; 26: 1087–94

    PubMed  CAS  Google Scholar 

  49. Dishman RK. The problem of exercise adherence: fighting sloth in nations with market economies. Quest 2001; 53: 279–94

    Article  Google Scholar 

  50. Morgan WP. Prescription of physical activity: a paradigm shift. Quest 2001; 53: 366–82

    Article  Google Scholar 

  51. Crombez G, Vlaeyen JWS, Heuts PHTG, et al. Painrelated fear is more disabling than pain itself: evidence onthe role of pain-related fear in chronic back pain disability. Pain 1999; 80: 329–39

    Article  PubMed  CAS  Google Scholar 

  52. Elfving B, Andersson T, Ja Grooten W. Low levels of physical activity in back pain patients are associated withhigh levels of fear-avoidance beliefs and pain catastrophizing. Physiother Res Int 2007; 12: 14–24

    Article  PubMed  Google Scholar 

  53. Nijs J, De Meirleir K, Duquet W. Kinesiophobia in chronic fatigue syndrome: assessment and associations with disability. Arch Phys Med Rehabil 2004; 85: 1586–92

    Article  PubMed  Google Scholar 

  54. Cox KL, Burke V, Gorely TJ, et al. Controlled comparison of retention and adherence in home versus center initiated exercise interventions in women ages 40-65 years: the S.W.E.A.T. study (Sedentary Women Exercise Adherence Trial). Prev Med 2003; 36: 17–29

    Article  PubMed  CAS  Google Scholar 

  55. Lee JY, Jensen BE, Oberman A, et al. Adherence in the Training Levels Comparison Trial. Med Sci Sports Exerc 1996; 28: 47–52

    PubMed  CAS  Google Scholar 

  56. Perri MG, Anton SD, Durning PE, et al. Adherence to exercise prescriptions: effects of prescribing moderateversus higher levels of intensity and frequency. Health Psychol 2002; 21: 452–8

    Article  PubMed  Google Scholar 

  57. Pollock ML, Wilmore JH, Fox SM. Health and fitness through physical activity. New York: John Wiley & Sons, 1978

    Google Scholar 

  58. Dishman RK. Compliance/adherence in health-related exercise. Health Psychol 1982; 1: 237–67

    Article  Google Scholar 

  59. Dishman RK. Health psychology and exercise adherence. Quest 1982; 33: 166–80

    Article  Google Scholar 

  60. Murphy MH, Nevill AM, Murtagh EM, et al. The effect of walking on fitness, fatness and resting blood pressure: ameta-analysis of randomised, controlled trials. Prev Med 2007; 44: 377–85

    Article  PubMed  Google Scholar 

  61. Brooks AG, Withers RT, Gore CJ, et al. Measurement and prediction of METs during household activities in 35- to45-year-old females. Eur J Appl Physiol 2004; 91: 638–48

    Article  PubMed  Google Scholar 

  62. Browning RC, Kram R. Energetic cost and preferred speed of walking in obese vs normal weight women. Obes Res 2005; 13: 891–9

    Article  PubMed  Google Scholar 

  63. Browning RC, Baker EA, Herron JA, et al. Effects of obesity and sex on the energetic cost of preferred speed of walking. J Appl Physiol 2006; 100: 390–8

    Article  PubMed  Google Scholar 

  64. Ekkekakis P, Hall EE, Van Landuyt LM, et al. Walking in (affective) circles: can short walks enhance affect? J Behav Med 2000; 23: 245–75

    Article  PubMed  CAS  Google Scholar 

  65. Ekkekakis P, Backhouse SH, Gray C, et al. Walking is popular among adults but is it pleasant? A framework forclarifying the link between walking and affect as illustratedin two studies. Psychol Sport Exerc 2008; 9: 246–64

    Article  Google Scholar 

  66. Farrell PA, Gates WK, Maksud MG. Increases in plasma b-endorphin/b-lipotropin immunoreactivity after treadmill running in humans. J Appl Physiol 1982; 52: 1245–9

    PubMed  CAS  Google Scholar 

  67. Fitzsimons CF, Creig CA, Saunders DH, et al. Responses to walking-speed instructions: implications for health promotionfor older adults. J Aging Phys Act 2005; 13: 172–83

    PubMed  Google Scholar 

  68. Focht BC, Hausenblas HA. State anxiety responses to acute exercise in women with high social physique anxiety. J Sport Exerc Psychol 2003; 25: 123–44

    Google Scholar 

  69. Glass SC, Chvala AM. Preferred exertion across three common modes of exercise training. J Strength Cond Res 2001; 15: 474–9

    PubMed  CAS  Google Scholar 

  70. Grant S, Corbett K, Todd K, et al. A comparison of physiological responses and rating of perceived exertion intwo modes of aerobic exercise in men and women over 50years of age. Br J Sports Med 2002; 36: 276–81

    Article  PubMed  CAS  Google Scholar 

  71. Gunn SM, van der Ploeg GE, Withers RT, et al. Measurement and prediction of energy expenditure in malesduring household and garden tasks. Eur J Appl Physiol 2004; 91: 61–70

    Article  PubMed  Google Scholar 

  72. Gunn SM, Brooks AG, Withers RT, et al. The energy cost of household and garden activities in 55- to 65-year-oldmales. Eur J Appl Physiol 2005; 94: 476–86

    Article  PubMed  Google Scholar 

  73. Hills AP, Byrne NM, Wearing S, et al. Validation of the intensity of walking for pleasure in obese adults. Prev Med 2006; 42: 47–50

    Article  PubMed  Google Scholar 

  74. Larsson UE, Mattsson E. Influence of weight loss programmes on walking speed and relative oxygen cost(%V̇O2max) in obese women during walking. J Rehabil Med 2003; 35: 91–7

    Article  PubMed  Google Scholar 

  75. Lind E, Joens-Matre RR, Ekkekakis P. What intensity of physical activity do formerly sedentary middle-aged womenselect? Evidence of a coherent pattern from physiological,perceptual, and affectivemarkers. Prev Med 2005; 40: 407–19

    Article  PubMed  Google Scholar 

  76. Malatesta D, Simar D, Dauvilliers Y, et al. Aerobic determinants of the decline in preferred walking speed inhealthy, active 65- and 80-year olds. Eur J Physiol 2004; 447: 915–21

    Article  CAS  Google Scholar 

  77. Mattsson E, Larsson UE, RÖssner S. Is walking for exercise too exhausting for obese women? Int J Obes 1997; 21: 380–6

    Article  CAS  Google Scholar 

  78. Michael E, Eckardt L. The selection of hard work by trained and non-trained subjects. Med Sci Sports 1972; 4: 107–10

    Google Scholar 

  79. Michael E, Hackett P. Physiological variables related to the selection of work effort on a treadmill and bicycle. Res Q 1972; 43: 216–35

    PubMed  CAS  Google Scholar 

  80. Murtagh EM, Boreham CAG, Murphy MH. Speed and exercise intensity of recreational walkers. Prev Med 2002; 35: 397–400

    Article  PubMed  Google Scholar 

  81. Nabetani T, Tokunaga M. The effect of short-term (10- and 15-min) running at self-selected intensity on moodalteration. J Physiol Anthropol 2001; 20: 233–9

    Article  Google Scholar 

  82. Parfitt G, Rose EA, Markland D. The effect of prescribed and preferred intensity exercise on psychological affectand the influence of baseline measures of affect. J Health Psychol 2000; 5: 231–40

    Article  PubMed  CAS  Google Scholar 

  83. Parfitt G, Rose EA, Burgess WM. The psychological and physiological responses of sedentary individuals to prescribedand preferred intensity exercise. Br J Health Psychol 2006; 11: 39–53

    Article  PubMed  Google Scholar 

  84. Parise C, Sternfeld B, Samuels S, et al. Brisk walking speed in older adults who walk for exercise. J Am Geriatr Soc 2004; 52: 411–6

    Article  PubMed  Google Scholar 

  85. Pintar JA, Robertson RJ, Kriska AM, et al. The influence of fitness and body weight on preferred exercise intensity. Med Sci Sports Exerc 2006; 38: 981–8

    Article  PubMed  Google Scholar 

  86. Quell KJ, Porcari JP, Franklin BA, et al. Is brisk walking an adequate aerobic training stimulus for cardiac patients? Chest 2002; 122: 1852–6

    Article  PubMed  Google Scholar 

  87. Rose EA, Parfitt G. A quantitative analysis and qualitative explanation of the individual differences in affective responsesto prescribed and self-selected exercise intensities. J Sport Exerc Psychol 2007; 29: 281–309

    PubMed  Google Scholar 

  88. Spelman CC, Pate RR, Macera CA, et al. Self-selected exercise intensity of habitual walkers. Med Sci Sports Exerc 1993; 25: 1174–9

    PubMed  CAS  Google Scholar 

  89. Szabo A. Acute psychological benefits of exercise performed at self-selected workloads: implications for theoryand practice. J Sports Sci Med 2003; 2: 77–87

    Google Scholar 

  90. Vazou-Ekkekakis S, Ekkekakis P. Affective consequences of imposing the intensity of physical activity: does the loss of perceived autonomy matter? Hell J Psychol 2009; vn6: 125–44

    Google Scholar 

  91. Withers RT, Brooks AG, Gunn SM, et al. Self-selected exercise intensity during household/garden activities andwalking in 55 to 65-year-old females. Eur J Appl Physiol 2006; 97: 494–504

    Article  PubMed  Google Scholar 

  92. Alexander RM. Energetics and optimization of human walking and running: the 2000 Raymond Pearl memoriallecture. Am J Hum Biol 2003; 14: 641–8

    Article  Google Scholar 

  93. Bertram JEA, Ruina A. Multiple walking speed-frequency relations are predicted by constrained optimization. J Theor Biol 2001; 209: 445–53

    Article  PubMed  CAS  Google Scholar 

  94. Donelan JM, Kram R, Kuo AD. Mechanical and metabolic determinants of the preferred step width in humanwalking. Proc R Soc Lond B Biol Sci 2001; 268: 1985–92

    Article  CAS  Google Scholar 

  95. Kuo AD. A simple model of bipedal walking predicts the preferred speed-step length relationship. J Biomech Eng 2001; 123: 264–9

    Article  PubMed  CAS  Google Scholar 

  96. Cunningham DA, Rechnitzer PA, Pearce ME. Determinants of self-selected walking pace across ages 19 to 66.J Gerontol 1982; 37: 560–4

    Article  PubMed  CAS  Google Scholar 

  97. Pearce ME, Cunningham DA, Donner AP, et al. Energy cost of treadmill and floor walking at self-selected paces. Eur J Appl Physiol 1983; 52: 115–9

    Article  CAS  Google Scholar 

  98. Cabanac M. Physiological role of pleasure. Science 1971; 173: 1103–7

    Article  PubMed  CAS  Google Scholar 

  99. Cabanac M. Sensory pleasure. Q Rev Biol 1979; 54: 1–29

    Article  PubMed  CAS  Google Scholar 

  100. Cabanac M. Exertion and pleasure from an evolutionary perspective. In: Acevedo EO, Ekkekakis P, editors. Psychobiologyof physical activity. Champaign (IL): Human Kinetics, 2006: 79–89

    Google Scholar 

  101. Cabanac M, LeBlanc J. Physiological conflict in humans: fatigue vs cold discomfort. Am J Physiol 1983; 244: R621–8

    Google Scholar 

  102. Cabanac M. Optimisation du comportement par la minimisation du dé plaisir dans un espace sensoriel à deux dimensions. C R Acad Sci III 1985; 13: 607–10

    Google Scholar 

  103. Cabanac M. Performance and perception at various combinations of treadmill speed and slope. Physiol Behav 1986; 38: 839–43

    Article  PubMed  CAS  Google Scholar 

  104. Laursen PB, Rhodes EC, Langill RH, et al. Relationship of exercise test variables to cycling performance in an Ironmantriathlon. Eur J Appl Physiol 2002; 87: 433–40

    Article  PubMed  CAS  Google Scholar 

  105. Laursen PB, Knez WL, Shing CM, et al. Relationship between laboratory-measured variables and heart rate duringan ultra-endurance triathlon. J Sports Sci 2005; 23: 1111–20

    Article  PubMed  Google Scholar 

  106. Perrey S, Grappe F, Girard A, et al. Physiological and metabolic responses of triathletes to a simulated 30-mintime-trial in cycling at self-selected intensity. Int J Sports Med 2003; 24: 138–43

    Article  PubMed  CAS  Google Scholar 

  107. Zamparo P, Perini R, Peano C, et al. The self-selected speed of running in recreational long-distance runners. Int J Sports Med 2001; 22: 598–604

    Article  PubMed  CAS  Google Scholar 

  108. Acevedo EO, Kraemer RR, Haltom RW, et al. Perceptual responses proximal to the onset of blood lactate accumulation. J Sports Med Phys Fitness 2003; 43: 267–73

    PubMed  CAS  Google Scholar 

  109. Bixby WR, Spalding TW, Hatfield BD. Temporal dynamics and dimensional specificity of the affective response toexercise of varying intensity: differing pathways to a common outcome. J Sport Exerc Psychol 2001; 23: 171–90

    Google Scholar 

  110. Ekkekakis P, Hall EE, Petruzzello SJ. Practical markers of the transition from aerobic to anaerobic metabolismduring exercise: rationale and a case for affect-based exerciseprescription. Prev Med 2004; 38: 149–59

    Article  PubMed  Google Scholar 

  111. Ekkekakis P, Hall EE, Petruzzello SJ. The relationship between exercise intensity and affective responses demystified:to crack the forty-year-old nut, replace the forty year-old nutcracker! Ann Behav Med 2008; 35: 136–49

    Article  PubMed  Google Scholar 

  112. Hall EE, Ekkekakis P, Petruzzello SJ. The affective beneficence of vigorous exercise revisited. Br J Health Psychol 2002; 7: 47–66

    Article  PubMed  Google Scholar 

  113. Kilpatrick M, Kraemer R, Bartholomew J, et al. Affective responses to exercise are dependent on intensity ratherthan total work. Med Sci Sports Exerc 2007; 39: 1417–22

    Article  PubMed  Google Scholar 

  114. Premack D, Schaeffer RW. Some parameters affecting the distributional properties of operant-level running in rats. J Exp Anal Behav 1963; 6: 473–5

    Article  PubMed  CAS  Google Scholar 

  115. Sullivan EL, Koegler FH, Cameron JL. Individual differences in physical activity are closely associated withchanges in body weight in adult female rhesus monkeys (Macaca mulatta). Am J Physiol 2006; 291: R633–42

    Google Scholar 

  116. Lightfoot JT, Turner MJ, Daves M, et al. Genetic influence on daily wheel running activity level. Physiol Genomics 2004; 19: 270–6

    Article  PubMed  CAS  Google Scholar 

  117. Swallow JG, Carter PA, Garland T. Artificial selection for increased wheel-running behavior in house mice. Behav Genet 1998; 28: 227–37

    Article  PubMed  CAS  Google Scholar 

  118. Morishima-Yamato M, Hisaoka F, Shinomiya S, et al. Cloning and establishment of a line of rats for high levelsof voluntary wheel running. Life Sci 2005; 77: 551–61

    Article  PubMed  CAS  Google Scholar 

  119. Rezende EL, Chappell MA, Gomes FR, et al. Maximal metabolic rates during voluntary exercise, forced exercise,and cold exposure in house mice selectively bred for highwheel-running. J Exp Biol 2005; 208: 2447–58

    Article  PubMed  Google Scholar 

  120. Rhodes JS, Gammie SC, Garland T. Neurobiology of mice selected for high voluntary wheel-running activity. Integr Comp Biol 2005; 45: 438–55

    Article  PubMed  Google Scholar 

  121. Rhodes JS, Garland T, Gammie SC. Patterns of brain activity associated with variation in voluntary wheelrunningbehavior. Behav Neurosci 2003; 117: 1243–56

    Article  PubMed  Google Scholar 

  122. Slawinska U, Kasicki S. The frequency of rat’s hippocampal theta rhythm is related to the speed of locomotion. Brain Res 1998; 796: 327–31

    Article  PubMed  CAS  Google Scholar 

  123. Morgan WP. Psychological factors influencing perceived exertion. Med Sci Sports 1973; 5: 97–103

    PubMed  CAS  Google Scholar 

  124. Hall EE, Ekkekakis P, Van Landuyt LM, et al. Resting frontal asymmetry predicts self-selected walking speed,but not affective responses to a short walk. Res Q Exerc Sport 2000; 71: 74–9

    PubMed  CAS  Google Scholar 

  125. Davidson RJ. Affective style and affective disorders: perspectives from affective neuroscience. Cogn Emot 1998; 12: 307–30

    Article  Google Scholar 

  126. Davidson RJ. Well-being and affective style: neural substrates and biobehavioural correlates. Philos Trans R Soc Lond B Biol Sci 2004; 359: 1395–411

    Article  PubMed  Google Scholar 

  127. Ekkekakis P, Hall EE, Petruzzello SJ. Some like it vigorous: individual differences in the preference for and tolerance ofexercise intensity. J Sport Exerc Psychol 2005; 27: 350–74

    Google Scholar 

  128. Ekkekakis P, Lind E, Joens-Matre RR. Can self-reported preference for exercise intensity predict physiologically defined self-selected exercise intensity? Res Q Exerc Sport 2006; 77: 81–90

    Article  PubMed  Google Scholar 

  129. Ewart CK, Stewart KJ, Gillilan RE, et al. Usefulness of selfefficacy in predicting overexertion during programmedexercise in coronary artery disease. Am J Cardiol 1986; 57: 557–61

    Article  PubMed  CAS  Google Scholar 

  130. Elman D, Schulte DC, Bukoff A. Effects of facial expression and stare duration on walking speed: two fieldexperiments. Environ Psychol Nonverbal Behav 1977; 2: 93–9

    Article  Google Scholar 

  131. Worringham CJ, Messick DM. Social facilitation of running: an unobtrusive study. J Soc Psychol 1983; 121: 23–9

    Article  PubMed  CAS  Google Scholar 

  132. Johnson JH, Phipps LK. Preferred method of selecting exercise intensity in adult women. J Strength Cond Res 2006; 20: 446–9

    PubMed  Google Scholar 

  133. Pollock ML, Broida J, Kendrick Z, et al. Effects of training two days per week at different intensities on middle-agedmen. Med Sci Sports 1972; 4: 192–7

    PubMed  CAS  Google Scholar 

  134. King AC, Haskell WL, Taylor CB, et al. Group- versus home-based exercise training in healthy older men andwomen. JAMA 1991; 266: 1535–42

    Article  PubMed  CAS  Google Scholar 

  135. Jakicic JM, Marcus BH, Gallagher KI, et al. Effect of exercise duration and intensity on weight loss in overweight,sedentary women: a randomized trial. JAMA 2003; 290: 1323–30

    Article  PubMed  CAS  Google Scholar 

  136. McNair DM, Lorr M, Droppleman LF. Manual for the profile of mood states. San Diego (CA): Educational and Industrial Testing Service, 1971

    Google Scholar 

  137. McAuley E, Courneya KS. The Subjective Exercise Experiences Scale (SEES): development and preliminaryvalidation. J Sport Exerc Psychol 1994; 16: 163–77

    Google Scholar 

  138. Hardy CJ, Rejeski WJ. Not what, but how one feels: the measurement of affect during exercise. J Sport Exerc Psychol 1989; 11: 304–17

    Google Scholar 

  139. Sheppard K, Parfitt G. Acute affective responses to prescribed and self-selected exercise intensities in youngadolescent boys and girls. Pediatr Exerc Sci 2008; 20: 129–41

    PubMed  Google Scholar 

  140. Lind E, Vazou S, Ekkekakis P. The affective impact of exercise intensity that slightly exceeds the preferred level: “pain” for no added “gain”. J Health Psychol 2008; 13: 464–8

    Article  PubMed  Google Scholar 

  141. Clapp JF, Little KD. The physiological response of instructors and participants to three aerobics regimens. Med Sci Sports Exerc 1994; 26: 1041–6

    PubMed  Google Scholar 

  142. Laukkanen RM, Kalaja MK, Kalaja SP, et al. Heart rate during aerobics classes in women with different previousexperience of aerobics. Eur J Appl Physiol 2001; 84: 64–8

    Article  PubMed  CAS  Google Scholar 

  143. Parker SB, Hurley BF, Hanlon DP, et al. Failure of target heart rate to accurately monitor intensity during aerobicdance. Med Sci Sports Exerc 1989; 21: 230–4

    PubMed  CAS  Google Scholar 

  144. De Angelis M, Vinciguerra G, Gasbarri A, et al. Oxygen uptake, heart rate and blood lactate concentration duringa normal training session of an aerobic dance class. Eur J Appl Physiol 1998; 78: 121–7

    Article  Google Scholar 

  145. Swaine IL, Emmett J, Murty D, et al. Rating of perceived exertion and heart rate relative to ventilatory threshold inwomen. Br J Sports Med 1995; 29: 57–60

    Article  PubMed  CAS  Google Scholar 

  146. Yancey SL, Overton JM. Cardiovascular responses to voluntary and treadmill exercise in rats. J Appl Physiol 1993; 75: 1334–40

    PubMed  CAS  Google Scholar 

  147. Armstrong RB, Laughlin MH. Exercise blood flow patterns within and among rat muscles after training. Am J Physiol 1984; 246: H59–68

    Google Scholar 

  148. Armstrong RB, Hayes DA, Delp MD. Blood flow distribution in rat muscles during preexercise anticipatory response. J Appl Physiol 1989; 67: 1855–61

    PubMed  CAS  Google Scholar 

  149. Yanagita S, Amemiya S, Suzuki S, et al. Effects of spontaneous and forced running on activation of hypothalamiccorticotropin-releasing hormone neurons in rats. Life Sci 2007; 80: 356–63

    Article  PubMed  CAS  Google Scholar 

  150. Ploughman M, Granter-Button S, Chernenko G, et al. Exercise intensity influences the temporal profile ofgrowth factors involved in neuronal plasticity following focal ischemia. Brain Res 2008; 1150: 207–16

    Article  CAS  Google Scholar 

  151. Arida RM, Scorza CA, da Silva AV, et al. Differential effect of spontaneous versus forced exercise in rats on thestaining of parvalbumin-positive neurons in the hippocampal formation. Neurosci Lett 2004; 364: 135–8

    Article  PubMed  CAS  Google Scholar 

  152. Noble EG, Moraska A, Mazzeo RS, et al.Differential expression of stress proteins in rat myocardium after free wheel ortreadmill run training. J Appl Physiol 1999; 86: 1696–701

    PubMed  CAS  Google Scholar 

  153. Moraska A, Deak T, Spencer RL, et al. Treadmill running produces both positive and negative physiological adaptationsin Sprague-Dawley rats. Am J Physiol 2000; 279: R1321–9

    Google Scholar 

  154. Narath E, Skalicky M, Viidik A. Voluntary and forced exercise influence the survival and body compositionof ageing male rats differently. Exp Gerontol 2001; 36: 1699–711

    Article  PubMed  CAS  Google Scholar 

  155. Girard I, McAleer MW, Rhodes JS, et al. Selection for high voluntary wheel-running increases speed and intermittencyin house mice (Mus domesticus). J Exp Biol 2001; 204: 4311–20

    PubMed  CAS  Google Scholar 

  156. Kramer DL, McLaughlin RL. The behavioral ecology of intermittent locomotion. Am Zool 2001; 41: 137–53

    Article  Google Scholar 

  157. Weinstein RB. Terrestrial intermittent exercise: common issues for human athletics and comparative animal locomotion. Am Zool 2001; 41: 219–28

    Article  Google Scholar 

  158. Weinstein RB, Full RJ. Intermittent exercise alters endurance in an eight-legged ectotherm. Am J Physiol 1992; 262: R852–9

    Google Scholar 

  159. Edwards EB, Gleeson TT. Can energetic expenditure be minimized by performing activity intermittently? J Exp Biol 2001; 204: 599–605

    PubMed  CAS  Google Scholar 

  160. Bailey RC, Olson J, Pepper SL, et al. The level and tempo of children’s physical activities: an observational study. Med Sci Sports Exerc 1995; 27: 1033–41

    Article  PubMed  CAS  Google Scholar 

  161. Feinberg RL, Gregory RT, Wheeler JR, et al. The ischemic window: a method for the objective quantitation of thetraining effect in exercise therapy for intermittent claudication. J Vasc Surg 1992; 16: 244–50

    Article  PubMed  CAS  Google Scholar 

  162. Donnelly JE, Jacobsen DJ, Jakicic JM, et al. Estimation of peak oxygen consumption from a sub-maximal half milewalk in obese females. Int J Obes 1992; 16: 585–9

    CAS  Google Scholar 

  163. Tsai JC, Chan P, Wang CH, et al. The effects of exercise training on walking function and perception of healthstatus in elderly patients with peripheral arterial occlusivedisease. J Intern Med 2002; 252: 448–55

    Article  PubMed  CAS  Google Scholar 

  164. King AC, Haskell WL, Young DR, et al. Long-term effects of varying intensities and formats of physical activity onparticipation rates, fitness, and lipoproteins in men and womenaged 50 to 65 years. Circulation 1995; 91: 2596–604

    Article  PubMed  CAS  Google Scholar 

  165. Andersen RE, Wadden TA, Bartlett SJ, et al. Effects of lifestyle activity versus structured aerobic exercise in obesewomen: a randomized trial. JAMA 1999; 281: 335–40

    Article  PubMed  CAS  Google Scholar 

  166. Dunn AL, Marcus BH, Kampert JB, et al. Comparison of lifestyle and structured interventions to increase physicalactivity and cardiorespiratory fitness: a randomized trial. JAMA 1999; 281: 327–34

    Article  PubMed  CAS  Google Scholar 

  167. Londeree BR. Effect of training on lactate/ventilatory thresholds: a meta-analysis. Med Sci Sports Exer 1997; 29: 837–43

    Article  CAS  Google Scholar 

  168. Belman MJ, Gaesser GA. Exercise training below and above the lactate threshold in the elderly. Med Sci Sports Exerc 1991; 23: 562–8

    PubMed  CAS  Google Scholar 

  169. Casaburi R, Storer TW, Sullivan CS, et al. Evaluation of blood lactate elevation as an intensity criterion for exercisetraining. Med Sci Sports Exerc 1995; 27: 852–62

    PubMed  CAS  Google Scholar 

  170. Weltman A, Seip RL, Snead D, et al. Exercise training at and above the lactate threshold in previously untrainedwomen. Int J Sports Med 1992; 13: 257–63

    Article  PubMed  CAS  Google Scholar 

  171. Ekkekakis P, Petruzzello SJ. Biofeedback in exercise psychology. In: Blumenstein B, Bar-Eli M, Tenenbaum G, editors. Brain and body in sport and exercise: biofeedbackapplication in performance enhancement. Chichester: John Wiley & Sons, 2002: 77–100

    Google Scholar 

  172. Chow RJ, Wilmore JH. The regulation of exercise intensity by ratings of perceived exertion. J Cardiac Rehabil 1984; 4: 382–7

    Google Scholar 

  173. Dishman RK, Patton RW, Smith J, et al. Using perceived exertion to prescribe and monitor exercise training heartrate. Int J Sports Med 1987; 8: 208–13

    Article  PubMed  CAS  Google Scholar 

  174. Wegner MS, Whaley MH, Glass SC, et al. Effects of a learning trial on self-regulation of exercise. Int J Sports Med 2007; 28: 685–90

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panteleimon Ekkekakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ekkekakis, P. Let Them Roam Free?. Sports Med 39, 857–888 (2009). https://doi.org/10.2165/11315210-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11315210-000000000-00000

Keywords

Navigation