Skip to main content
Log in

Is it Time to Retire the ‘Central Governor’?

  • Current Opinion
  • Is it Time to Retire the ‘Central Governor’?
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Over the past 13 years, Noakes and his colleagues have argued repeatedly for the existence of a ‘Central Governor’, a specific brain centre that provides a feed-forward regulation of the intensity of vigorous effort in order to conserve homeostasis, protecting vital organs such as the brain, heart and skeletal muscle against damage from hyperthermia, ischaemia and other manifestations of catastrophic failure. This brief article reviews evidence concerning important corollaries of the hypothesis, examining the extent of evolutionary pressures for the development of such a mechanism, the effectiveness of protection against hyperthermia and ischaemia during exhausting exercise, the absence of peripheral factors limiting peak performance (particularly a plateauing of cardiac output and oxygen consumption) and proof that electromyographic activity is limiting exhausting effort. As yet, there is a lack of convincing experimental evidence to support these corollaries of the hypothesis; furthermore, some findings, such as the rather consistent demonstration of an oxygen consumption plateau in young adults, argue strongly against the limiting role of a ‘Central Governor’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Shephard RJ. Physiology and biochemistry of exercise. New York (NY): Praeger Publications, 19820

    Google Scholar 

  2. Abbis CR, Laursen PB. Models to explain fatigue during prolonged endurance cycling. Sports Med 2005; 35: 865–98

    Article  Google Scholar 

  3. Ulmer CV. Concept of an extracellular regulation of muscular metabolic rate during heavy exercise in humansby psychophysiological feedback. Experientia 1996; 52: 416–20

    Article  PubMed  CAS  Google Scholar 

  4. Noakes TD. How did A.V. Hill understand the V̇O2max and the “plateau phenomenon”? Still no clarity? Br J Sports Med 2008; 42: 574–80 yanong v02 max

    CAS  Google Scholar 

  5. Hill AV, Long CHN, Lupton H. Muscular exercise, lactic acid and the supply and utilisation of oxygen: partsVII-VIII. Proc Roy Soc B 1924; 97: 155–76

    Article  CAS  Google Scholar 

  6. Noakes TD. Physiological models to understand exercise fatigue and the adaptations that predict or enhanceathletic performance. Scand J Med Sci Sports 2000; 10: 123–45

    Article  PubMed  CAS  Google Scholar 

  7. Hampson DB, St Clair Gibson A, Lambert MI, et al. The influence of sensory cues on the perception of exertionduring exercise and central regulation of exercise performance. Sports Med 2001; 31: 935–52

    Article  PubMed  CAS  Google Scholar 

  8. Kay D, Marino FE, Cannon J, et al. Evidence for neuromuscular fatigue during high intensity cycling in warm, humid conditions. Eur J Appl Physiol 2001; 84: 115–21

    Article  PubMed  CAS  Google Scholar 

  9. Noakes TD, Peltonen JE, Rusko HK. Evidence that a central governor regulates exercise performance duringacute hypoxia and hyperoxia. J Exp Biol 2001; 204 Pt 18: 3225–34

    PubMed  CAS  Google Scholar 

  10. Noakes TD. Linear relationship between the perception of effort and the duration of constant load exercise thatremains. J Appl Physiol 2004; 96: 1571–2

    Article  PubMed  Google Scholar 

  11. Ansley L, Schabort EJ, St Clair Gibson A, et al. Regulation of pacing strategies during successive 4km time trials. Med Sci Sports Exerc 2004; 38: 1819–25

    Google Scholar 

  12. Noakes TD, St Clair Gibson A, Lambert EV. From catastrophe to complexity: a novel model of integrative centralneural regulation of effort and fatigue during exercise in humans. Br J Sports Med 2004; 38: 511–4

    Article  PubMed  CAS  Google Scholar 

  13. Noakes TD, St Clair Gibson A. Logical limitations to the catastrophe models of fatigue during exercise in humans. Br J Sports Med 2004; 38: 648–9

    Article  PubMed  CAS  Google Scholar 

  14. St Clair Gibson A, Noakes TD. Evidence for complex system regulation and dynamic neural regulation ifskeletal muscle recruitment during exercise in humans. Br J Sports Med 2004; 38: 797–806

    Article  PubMed  CAS  Google Scholar 

  15. Noakes TD, Calbet JA, Boshel R, et al. Central regulation of skeletal muscle recruitment explains the reducedmaximal cardiac output during hypoxia. Am J Physiol 2004; 287: R996–9

    Google Scholar 

  16. Tucker R, Rauch I, Harley YXR, et al. Impaired exercise performance in the heat is associated with an anticipatoryreduction in skeletal muscle recruitment. Pflüg Archiv 2004; 448: 422–30

    CAS  Google Scholar 

  17. Lambert M, St Clair Gibson A, Noakes TD. Complex systems model of fatigue: integrative homeostatic controlof peripheral physiological systems during exercise in humans. Br J Sports Med 2005; 39: 52–62

    Article  PubMed  CAS  Google Scholar 

  18. Tucker R, Marle T, Lambert EV. The rate of heat storage mediates an anticipatory reduction in exercise intensityduring cycling at a fixed rating of perceived exertion. J Physiol 2006; 574: 905–15

    Article  PubMed  CAS  Google Scholar 

  19. Noakes TD. Determining the extent of neural activation during maximal effort [abstract]. Med Sci Sports Exerc 2007; 39: 2092

    Article  PubMed  Google Scholar 

  20. Noakes TD. The central governor of exercise regulation applied to the marathon. Sports Med 2007; 37: 374–77

    Article  PubMed  Google Scholar 

  21. Noakes TD. Testing for maximum oxygen consumption has produced a brainless model of human exercise performance. Br J Sports Med 2008; 42: 551–5

    Article  PubMed  CAS  Google Scholar 

  22. Noakes TD, Marino FE. Maximal oxygen uptake is limited by a central nervous system governor. J Appl Physiol 2009; 106: 338–9

    Article  PubMed  Google Scholar 

  23. Crewe H, Tucker R, Noakes TD. The rate of increase of perceived exertion predicts the duration of exercise to fatigueat a fixed power output in different environmentalconditions. Eur J Appl Physiol 2008; 103: 569–77

    Article  PubMed  Google Scholar 

  24. Noakes TD, Tucker R. Do we really need a central governor to explain brain regulation of exercise performance?A response to the letter of Dr Marcora. Eur J Appl Physiol 2008; 104: 933–5

    Article  Google Scholar 

  25. Kayser B. Exercise starts and ends in the brain. Eur J Appl Physiol 2003; 90: 411–9

    Article  PubMed  Google Scholar 

  26. Abbis CR, Laursen PB. Describing and understanding pacing strategies during athletic competition. Sports Med 2008; 38: 239–52

    Article  Google Scholar 

  27. Baron B, Noakes TD, Dekerle J, et al. Why does exercise terminate at the maximal lactate steady state intensity. Br J Sports Med 2008; 42: 528–33

    Article  Google Scholar 

  28. Baron B, Deruelle F, Moullan F, et al. The eccentric muscle loading influences the pacing strategies during repeateddownhill sprint intervals. Eur J Appl Physiol 2009; 105: 749–57

    Article  PubMed  CAS  Google Scholar 

  29. Castle PC, Macdonald AL, Philp A, et al. Precooling leg muscle improves intermittent sprint exercise performancein hot, humid conditions. J Appl Physiol 2006; 100: 1377–84

    Article  PubMed  Google Scholar 

  30. Clark SA, Bourdon PC, Schmidt W, et al. The effect of acute simulated altitude on power, performance andpacing strategies in well-trained cyclists. Eur J Appl Physiol 2007; 102: 45–55

    Article  PubMed  Google Scholar 

  31. Edwards AM, Mann ME, Marfell-Jones MJ, et al. Influence of moderate hydration on soccer performance:physiological responses to 45 min of outdoor match-playand the immediate subsequent performance of sport-specificand mental concentration tests. Br J Sports Med 2007; 41: 385–91

    Article  PubMed  Google Scholar 

  32. Eston R, Faulkner J, St Clair Gibson A, et al. The effect of antecedent fatiguing activity on the relationship between perceived exertion and physiological activity during aconstant load exercise task. Psychophysiol 2007; 44: 779–86

    Article  Google Scholar 

  33. Flouris AD, Cheung SS. Human conscious response to thermal input is adjusted to changes in mean body temperature. Br J Sports Med 2009; 43: 199–203

    Article  PubMed  CAS  Google Scholar 

  34. Joseph T, Johnson B, Battista RC, et al. Perception of fatigue during simulated competition. Med Sci Sports Exerc 2008; 40: 381–6

    Article  PubMed  Google Scholar 

  35. Kabitz H-J, Walker D, Schwoerer A, et al. New physiological insights into exercise-induced diaphragmatic fatigue. Resp Physiol Neurobiol 2007; 158: 88–96

    Article  Google Scholar 

  36. Morante SM, Brotherhood JR. Autonomic and behavioural thermoregulation in tennis. Br J Sports Med 2008; 42: 679–85

    Article  PubMed  CAS  Google Scholar 

  37. Nummela AT, Heath KA, Paavolainen LM, et al. Fatigue during a 5-km running time trial. Int J Sports Med 2008; 29: 738–45

    Article  PubMed  CAS  Google Scholar 

  38. Racinais S, Bringard A, Puchaux K, et al. Modulation in voluntary neural drive in relation to muscle soreness. Eur J Appl Physiol 2008; 102: 439–46

    Article  PubMed  CAS  Google Scholar 

  39. Ross EZ, Middleton N, Shave R, et al. Corticomotor excitability contributes to neuromuscular fatigue followingmarathon running in man. Exp Physiol 2007; 92: 417–26

    Article  PubMed  Google Scholar 

  40. Thomas R, Stephens P. Prefrontal cortex oxygenation and neuromuscular responses to exhaustive exercise. Eur J Appl Physiol 2008; 102: 153–63

    Article  PubMed  CAS  Google Scholar 

  41. Bergh U, Ekblom B, Åstrand PO. Maximal oxygen uptake “classical” versus “contemporary” viewpoints. Med Sci Sports Exerc 2000; 32: 85–8

    PubMed  CAS  Google Scholar 

  42. Brink-Elfegoun T, Holmberg H-C, Ekblom MN, et al. Neuromuscular and circulatory adaptations during combinedarm and leg exercise with different maximal workloads. Eur J Appl Physiol 2007; 101: 603–11

    Article  PubMed  Google Scholar 

  43. di Prampero PE, Capelli C, Ferretti G. Positive effects of intermittent hypoxia (live high:train low) on exerciseperformance are/are not mediated primarily by augmentedred cell volume [comments on point:counterpoint]. J Appl Physiol 2005; 99: 2453–62

    Article  PubMed  Google Scholar 

  44. Snell PG, Stray-Gundersen J, Levine BD, et al. Maximal oxygen uptake as a parametric measure of cardio respiratory capacity. Med Sci Sports Exerc 2007; 39: 103–7

    Article  PubMed  Google Scholar 

  45. Shephard RJ. Is the measurement of maximal oxygen intake passé? Br J Sports Med 2009; 43: 83–5

    Article  PubMed  Google Scholar 

  46. Shephard RJ. Hard evidence for a central governor is still lacking. J Appl Physiol 2009; 106: 343

    Article  PubMed  Google Scholar 

  47. Foster C. Untitled. J Appl Physiol 2009; 106: 343

    PubMed  Google Scholar 

  48. Hopkins WG. The implausible governor. Sportscience 2009; 13: 9–11

    Google Scholar 

  49. Marino FE. The evolutionary basis of thermoregulation and exercise performance. In: Marino FE, editor. Thermoregulation and human performance: physiological and biological aspects. Basel: Karger Publications, 2008: 1–13

    Chapter  Google Scholar 

  50. Noakes TD. Implications of exercise testing for prediction of athletic performance: a contemporary perspective. Med Sci Sports Exerc 1988; 20: 319–30

    Article  PubMed  CAS  Google Scholar 

  51. Noakes TD. Maximal oxygen uptake: “classical” versus “contemporary” viewpoints–a rebuttal. Med Sci Sports Exerc 1998; 30: 1381–98

    PubMed  CAS  Google Scholar 

  52. St Clair Gibson A, Schabort EJ, Noakes TD. Reduced neuromuscular activity and force generation duringprolonged cycling. Am J Physiol 2001; 281: R187–96

    Google Scholar 

  53. Mosso A. Fatigue. London: George Allen & Unwin, 1915

    Google Scholar 

  54. Marino FE. Comparative thermoregulation and the quest for athletic supremacy. In: Marino FE, editor. Thermo regulation and human performance: physiologicaland biological aspects. Basel: Karger Publications, 2008: 14–25

    Chapter  Google Scholar 

  55. Shephard RJ. Human physiological work capacity. London: Cambridge University Press, 1978

    Book  Google Scholar 

  56. Godin G, Shephard RJ. Activity patterns of the Canadian Eskimo. In: Edholm O, Gunderson EK, editors. Human polar biology. Cambridge: Heinemann, 1973

    Google Scholar 

  57. Lee RB. Kung bushmen subsistence: an input-output analysis. In: Vayda AP, editor. Environment and cultural behavior. New York (NY): Natural History Press, 1969

    Google Scholar 

  58. Wolfarth B, Rankinen T, Muhlbauer S, et al. Association between a beta2-adrenergic receptor polymorphism andelite endurance performance. Metab Clin Exper 2007; 56: 1649–51

    Article  CAS  Google Scholar 

  59. Lambert MI, Mann T, Dugas JP. Ethnicity and temperature regulation. In: Marino FE, editor. Thermo regulation and human performance: physiological and biological aspects. Basel: Karger Publications, 2008: 104–20

    Chapter  Google Scholar 

  60. Taylor CR, Schmidt-Nielsen K, Dmi’el R, et al. Effect of hyperthermia on heat balance during running in the African hunting dog. Am J Physiol 1971; 220: 823–7

    PubMed  CAS  Google Scholar 

  61. Luke AC, Bergeron MF, Roberts WO. Heat injury prevention practices in high school football. Clin J Sports Med 2007; 17: 488–93

    Article  Google Scholar 

  62. Pugh LGCE, Corbett JL, Johnson RH. Rectal temperatures, weight losses and sweat rates in marathon running. J Appl Physiol 1967; 23: 347–52

    PubMed  CAS  Google Scholar 

  63. Sutton JR, Coleman MJ, Millar AP, et al. The medical problems of mass participation in athletic competition: the “City to Surf” race. Med J Aust 1972; 2: 127–33

    PubMed  CAS  Google Scholar 

  64. Mueller FO, Cantu RC. Twentieth annual report: Fall 1982-Spring 2002, National Center for Catastrophic Sport Injury Research. Chapel Hill (NC): University of North Carolina, National Center for Catastrophic Sport Injury Research, 2004

    Google Scholar 

  65. Vuori I. Exercise and sudden cardiac death: effects of age and type of activity. Sports Sci Rev 1995; 4 (2): 46–84

    Google Scholar 

  66. Neilan TG, Yoerger D, Douglas P, et al. Persistent and reversible cardiac dysfunction among amateur marathon runners. Eur Heart J 2006; 27: 1079–84

    Article  PubMed  Google Scholar 

  67. Neilan TG, Jnauzzi JL, Lee-Lewandrowski E, et al. Myocardial injury and ventricular dysfunction related totraining levels among nonelite participants in the Boston marathon. Circulation 2006; 114: 2325–33

    Article  PubMed  Google Scholar 

  68. Whyte GP. Clinical significance of cardiac damage and changes in function after exercise. Med Sci Sports Exerc 2008; 40: 1416–23

    Article  PubMed  Google Scholar 

  69. Shephard RJ. Ischemic heart disease and exercise. London: Croom Helm, 1981

    Google Scholar 

  70. Clarkson PM. Exertional rhabdomyolysis and acute renal failure in marathon runners. Sports Med 2007; 27: 361–3

    Article  Google Scholar 

  71. Schiff HB, MacSearraigh ET, Kallmeyer JC. Myoglobinuria, rhabdomyolysis and marathon running. Quart J Med 1978; 47: 463–72

    PubMed  CAS  Google Scholar 

  72. Seedat YK, Aboo N, Naicker S, et al. Acute renal failure in the “Comrades Marathon” runners. Renal Failure 1989; 11: 209–12

    Article  PubMed  Google Scholar 

  73. González-Alonso J. Hyperthermia impairs brain, heart and muscle function in exercising humans. Sports Med 2007; 37: 371–3

    Article  PubMed  Google Scholar 

  74. Cheung SS, Sleivert GG. Multiple triggers for hyperthermic fatigue and exhaustion. Ex Sport Sci Rev 2004;32: 100–6

    Article  Google Scholar 

  75. Lagerche A, Prior D. Exercise: is it possible to have too much of a good thing? Heart Lung Circ 2007; 16 Suppl. 3: S102–4

    Article  Google Scholar 

  76. McKechnie JK, Lear WP, Noakes TD, et al. Acute pulmonary edema in two athletes during a 90km running race. S Afr Med J 1979; 56: 261–5

    PubMed  CAS  Google Scholar 

  77. Zavorsky GS. Evidence of pulmonary oedema triggered by exercise in healthy humans and detected with various imaging techniques. Acta Physiol 2007; 189: 305–17

    Article  CAS  Google Scholar 

  78. Shephard RJ. Aerobic fitness and health. Champaign (IL): Human Kinetics, 1994

    Google Scholar 

  79. Andersen P, Saltin B. Maximal perfusion of skeletal muscle in man. J Physiol 1985; 366: 233–49

    PubMed  CAS  Google Scholar 

  80. Rowell LB. Human cardio vascular control. Oxford: Oxford University Press, 1993

    Google Scholar 

  81. Stray-Gundersen J, Musch TI, Haidet GC, et al. The effect of pericardiectomy on maximal oxygen consumption and maximal cardiac output in untrained dogs. Circulation Res 1986; 58: 523–30

    Article  PubMed  CAS  Google Scholar 

  82. Hammond HK, White FC, Bhargava V, et al. Heart size and maximal cardiac output are limited by the pericardium. Am J Physiol 1992; 263: H1675–81

    Google Scholar 

  83. Leyk D, Egfeld D, Hoffmann U, et al. Postural effect on cardiac output, oxygen uptake and lactate during cycle exercise of varying intensity. Eur J Appl Physiol 1994; 68: 30–5

    Article  CAS  Google Scholar 

  84. Zhou B, Conlee RK, Jensen R, et al. Stroke volume does not plateau during graded exercise in elite male distance runners. Med Sci Sports Exerc 2001; 33: 1849–54

    Article  PubMed  CAS  Google Scholar 

  85. Gledhill N, Cox D, Jamnik R. Endurance athletes’ stroke volume does not plateau: major advantage is diastolic function. Med Sci Sports Exerc 1994; 26: 1116–21

    PubMed  CAS  Google Scholar 

  86. González-Alonso J, Calbet J. Reductions in systemic and skeletal muscle blood flow and oxygen delivery limitmaximal aerobic capacity in humans. Circulation 2003; 107: 824–30

    Article  PubMed  Google Scholar 

  87. Mortensen SP, Dawson EA, Yoshiga CC, et al. Limitations to systemic and locomotor limb muscle oxygen deliveryand uptake during maximal exercise in humans. J Physiol 2005; 566: 273–85

    Article  PubMed  CAS  Google Scholar 

  88. Mortensen SP, Damsgaard R, Dawson EA, et al. Restrictions in systemic and locomotor skeletal muscle perfusion,oxygen supply and VO2 during high-intensity whole-bodyexercise in humans. J Physiol 2008; 586: 2621–35

    Article  PubMed  CAS  Google Scholar 

  89. Ekblom B. Point/counterpoint: maximal oxygen intake is not limited by a central nervous system governor. J Appl Physiol 2009; 106: 341–2

    Google Scholar 

  90. Kaijser L, Grubbstrom J, Berglund B. Myocardial lactate release during prolonged exercise under hypoxemia. Acta Physiol Scand 1993; 149: 427–33

    Article  PubMed  CAS  Google Scholar 

  91. Grubbstrom J, Berglund B, Kaijser L. Myocardial blood flow and lactate metabolism at rest and during exercisewith reduced arterial oxygen content. Acta Physiol Scand 1991; 142: 567–74

    Article  Google Scholar 

  92. Vatner SF, Higgins CB, Franklin D, et al. Role of tachycardia in mediating the coronary hemodynamic response to severe exercise. J Appl Physiol 1972; 32: 380–9

    PubMed  CAS  Google Scholar 

  93. Shephard RJ. Aging, physical activity and health. Champaign (IL): Human Kinetics, 1997

    Google Scholar 

  94. Pugh LGCE. Physiological and medical aspects of the Himalayan Scientific and Mountaineering Expedition,1960-1961. BMJ 1962; 2: 621–7

    Article  PubMed  CAS  Google Scholar 

  95. Doherty M, Nobbs I, Noakes TD. Low frequency of the “plateau phenomenon” during maximal exercise in elite British athletes. Eur J Appl Physiol 2003; 89: 619–23

    Article  PubMed  CAS  Google Scholar 

  96. Shephard RJ, Allen C, Benade AJS, et al. The maximum oxygen intake: an international reference standard ofcardio-respiratory fitness. Bull WHO 1968; 38: 757–64

    PubMed  CAS  Google Scholar 

  97. Myers J, Walsh D, Sullivan M, et al. Effect of sampling on variability and plateau in oxygen uptake. J Appl Physiol 1990; 68: 404–10

    Article  PubMed  CAS  Google Scholar 

  98. Shephard RJ, Bouhlel E, Vandewalle H, et al. Muscle mass as a factor limiting physical work. Eur J Appl Physiol 1988; 64: 1472–9

    CAS  Google Scholar 

  99. Astorino TA, Willey J, Kinnahan J, et al. Elucidating determinants of the plateau in oxygen consumption at V̇O2max. Br J Sports Med 2005; 39: 655–60

    Article  PubMed  CAS  Google Scholar 

  100. Myers J, Walsh D, Buchanan N, et al. Can maximal cardio pulmonary capacity be recognized by a plateau inoxygen uptake? Chest 1989; 96: 1312–6

    Article  PubMed  CAS  Google Scholar 

  101. Day JR, Rossiter HB, Coats EM, et al. The maximally attainable V̇O2 during exercise in humans: the peak vs maximum issue. J Appl Physiol 2003; 95: 1901–7

    PubMed  CAS  Google Scholar 

  102. Åstrand PO, Saltin B. Maximal oxygen uptake and heart rate in various types of muscular activity. J Appl Physiol 1961; 16: 977–81

    PubMed  Google Scholar 

  103. Hill AV, Lupton H. Muscular exercise, lactic acid, and the supply and utilisation of oxygen. Quart J Med 1923; 16: 135–71

    Article  CAS  Google Scholar 

  104. Taylor HL, Buskirk ER, Henschel A. Maximal oxygen intake as an objective measure of cardio-respiratory performance. J Appl Physiol 1955; 8: 73–80

    PubMed  CAS  Google Scholar 

  105. Wagner PD. New ideas on limitations to V̇O2max. Exerc Sport Sci Rev 2000; 28: 10–4

    PubMed  CAS  Google Scholar 

  106. Sloniger MA, Cureton KJ, Prior BM, et al. Lower extremity muscle activation during horizontal and uphill running. J Appl Physiol 1997; 83: 2073–9

    PubMed  CAS  Google Scholar 

  107. Kayser B, Narici M, Binzoni T, et al. Fatigue and exhaustion in chronic hypobaric hypoxia: influence of exercising muscle mass. J Appl Physiol 1994; 76: 634–40

    PubMed  CAS  Google Scholar 

  108. St Clair Gibson A, Lambert MI, Noakes TD. Neural control of force output during maximal and submaximal exercise. Sports Med 2001; 31: 637–50

    Article  PubMed  CAS  Google Scholar 

  109. Nicol C, Komi PV, Marconnet P. Fatigue effects of marathon running on neuromuscular performance. Scand J Sci Sports 1991; 1: 18–24

    Article  Google Scholar 

  110. Garland SJ, McComas A. Reflex inhibition of human soleus muscle during fatigue. J Physiol 1990; 429: 17–27

    PubMed  CAS  Google Scholar 

  111. Spriet LL, Soderlund KK, Bergstrom M, et al. Anaerobic energy release in skeletal muscle during electrical stimulation in man. J Appl Physiol 1987; 62: 611–5

    Article  PubMed  CAS  Google Scholar 

  112. Hargreaves M. Fatigue mechanisms determining exercise performance: integrative physiology is systems biology. J Appl Physiol 2008; 104: 1541–2

    Article  PubMed  Google Scholar 

  113. Tucker R, Lambert MI, Noakes TD. An analysis of pacing strategies during men’s world performances in track athletics. Int J Sports Physiol Perf 2006; 1: 233–45

    Google Scholar 

  114. Marcora S, Staiano W, Manning V. Mental fatigue impairs physical performance in humans. J Appl Physiol 2009; 106: 857–64

    Article  PubMed  Google Scholar 

  115. Galloway SDR, Maughan RJ. Effect of ambient temperature on the capacity to perform prolonged cycle exercise in man. Med Sci Sports Exerc 1997; 29: 1240–9

    Article  PubMed  CAS  Google Scholar 

  116. Tucker R. Thermoregulation, fatigue, and exercise modality. In: Marino FE, editor. Thermoregulation and human performance: physiological and biological aspects. Basel: Karger Publications, 2008: 26–38

    Chapter  Google Scholar 

  117. Savard GK, Nielsen B, Laszczynska J, et al. Muscle blood flow is not reduced in humans during moderateexercise and heat stress. J Appl Physiol 1988; 64: 649–57

    PubMed  CAS  Google Scholar 

  118. Tatterson AJ, Hahn AG, Martin DT, et al. Effect of heat and humidity on time trial performance inAustralian national team road cyclists. J Sci Med Sport 2000; 3: 186–93

    Article  PubMed  CAS  Google Scholar 

  119. Baldwin J, Snow RJ, Gibala MJ, et al. Glycogen availability does not affect the TCA cycle or TAN pools duringprolonged, fatiguing exercise. J Appl Physiol 2003; 94: 2181–7

    PubMed  CAS  Google Scholar 

  120. Weir JP, Beck TW, Cramer JT, et al. Is fatigue all in your head? A critical review of the central governor model. Br J Sports Med 2006; 40: 573–86

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No funding was received for the preparation of this article, and the author has no conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy J. Shephard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shephard, R.J. Is it Time to Retire the ‘Central Governor’?. Sports Med 39, 709–721 (2009). https://doi.org/10.2165/11315130-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11315130-000000000-00000

Keywords

Navigation