Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hypoxia—a key regulator of angiogenesis and inflammation in rheumatoid arthritis

Abstract

The importance of inflammation in rheumatoid arthritis (RA) is well understood. This knowledge has resulted in the development of anti-inflammatory therapies—either broadly acting (such as steroids) or more specific approaches (such as antibodies against TNF)—with biologic therapies (including TNF inhibitors) revolutionizing the treatment of RA. However, what is less well appreciated in RA are the links between inflammation, blood-vessel formation (angiogenesis) and cellular responses to changes in oxygen tension. Inadequate oxygenation, termed hypoxia, is thought to drive the increase in synovial angiogenesis that occurs in RA, through expression of hypoxia-inducible molecules, including vascular endothelial growth factor (VEGF). This process promotes further infiltration of inflammatory cells and production of inflammatory mediators, perpetuating synovitis. This Review highlights the molecular pathways activated by hypoxia, and how these pathways might interact with inflammatory signaling to promote and maintain synovitis in RA, with a particular focus on the response of macrophages to hypoxia in the context of RA. Successful treatment of RA, for example with anti-TNF antibodies, reduces levels of proangiogenic factors, including VEGF, and leads to normalization of the vasculature. These processes emphasise the close links between hypoxia, angiogenesis and inflammation in this disease and supports the concept that angiogenesis blockade could be of therapeutic benefit in RA.

Key Points

  • Hypoxia induces profound changes in gene expression in rheumatoid arthritis (RA) and, in particular, upregulates factors responsible for promoting angiogenesis such as vascular endothelial growth factor

  • Inflammatory signaling pathways, such as the nuclear factor κB cascade, might converge with hypoxia-regulated pathways to further perpetuate inflammation, proliferation and angiogenesis

  • Targeting angiogenesis—either through blockade of growth-factor-mediated responses or by inhibition of hypoxia-dependent signaling—might be of therapeutic benefit in RA, in combination with established therapies such as TNF inhibitors

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potential interactions between the inflammatory NFκB cascade and the HIF pathway.
Figure 2: Hypoxia-regulated macrophage responses relevant to RA.

Similar content being viewed by others

References

  1. Pagel, H., Engel, A. & Jelkmann, W. Erythropoietin induction by hypoxia. A comparison of in vitro and in vivo experiments. Adv. Exp. Med. Biol. 317, 515–519 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Szekanecz, Z. & Koch, A. E. Angiogenesis and its targeting in rheumatoid arthritis. Vascul. Pharmacol. 51, 1–7 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Muz, B., Khan, M. N., Kiriakidis, S. & Paleolog, E. M. The role of hypoxia and HIF-dependent signalling events in rheumatoid arthritis. Arthritis Res. Ther. 11, 201 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Szekanecz, Z., Besenyei, T., Paragh, G. & Koch, A. E. New insights in synovial angiogenesis. Joint Bone Spine 77, 13–19 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Thairu, N., Kiriakidis, S., Dawson, P. & Paleolog, E. Angiogenesis as a therapeutic target in arthritis in learning the lessons of the colorectal cancer experience. Angiogenesis 14, 223–234 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Semenza, G. L. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda) 24, 97–106 (2009).

    CAS  Google Scholar 

  7. Carmeliet, P. & Jain, R. K. Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298–307 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rey, S. & Semenza, G. L. Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovasc. Res. 86, 236–242 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Semenza, G. L. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29, 625–634 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Ema, M. et al. Molecular mechanisms of transcription activation by HLF and HIF1α in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300. EMBO J. 18, 1905–1914 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, G. L. & Semenza, G. L. Purification and characterization of hypoxia-inducible factor 1. J. Biol. Chem. 270, 1230–1237 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Hu, C. J., Wang, L. Y., Chodosh, L. A., Keith, B. & Simon, M. C. Differential roles of hypoxia-inducible factor 1α (HIF-1α) and HIF-2α in hypoxic gene regulation. Mol. Cell. Biol. 23, 9361–9374 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Warnecke, C. et al. Differentiating the functional role of hypoxia-inducible factor (HIF)-1α and HIF-2α (EPAS-1) by the use of RNA interference: erythropoietin is a HIF-2α target gene in Hep3B and Kelly cells. FASEB J. 18, 1462–1464 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Raval, R. R. et al. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol. Cell. Biol. 25, 5675–5686 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ema, M. et al. A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1α regulates the VEGF expression and is potentially involved in lung and vascular development. Proc. Natl Acad. Sci. USA 94, 4273–4278 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tian, H., McKnight, S. L. & Russell, D. W. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. 11, 72–82 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Warnecke, C. et al. The specific contribution of hypoxia-inducible factor-2α to hypoxic gene expression in vitro is limited and modulated by cell type-specific and exogenous factors. Exp. Cell. Res. 314, 2016–2027 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Aprelikova, O., Wood, M., Tackett, S., Chandramouli, G. V. & Barrett, J. C. Role of ETS transcription factors in the hypoxia-inducible factor-2 target gene selection. Cancer Res. 66, 5641–5647 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Sowter, H. M., Raval, R. R., Moore, J. W., Ratcliffe, P. J. & Harris, A. L. Predominant role of hypoxia-inducible transcription factor (Hif)-1α versus Hif-2α in regulation of the transcriptional response to hypoxia. Cancer Res. 63, 6130–6134 (2003).

    CAS  PubMed  Google Scholar 

  21. Ryan, H. E., Lo, J. & Johnson, R. S. HIF-1α is required for solid tumor formation and embryonic vascularization. EMBO J. 17, 3005–3015 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Feldmann, M. Development of anti-TNF therapy for rheumatoid arthritis. Nat. Rev. Immunol. 2, 364–371 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Lee, Y. A. et al. Synovial proliferation differentially affects hypoxia in the joint cavities of rheumatoid arthritis and osteoarthritis patients. Clin. Rheumatol. 26, 2023–2029 (2007).

    Article  PubMed  Google Scholar 

  24. Lund-Olesen, K. Oxygen tension in synovial fluids. Arthritis Rheum. 13, 769–776 (1970).

    Article  CAS  PubMed  Google Scholar 

  25. Hitchon, C. A., El-Gabalawy, H. S. & Bezabeh, T. Characterization of synovial tissue from arthritis patients: a proton magnetic resonance spectroscopic investigation. Rheumatol. Int. 29, 1205–1211 (2009).

    Article  PubMed  Google Scholar 

  26. Sivakumar, B. et al. Synovial hypoxia as a cause of tendon rupture in rheumatoid arthritis. J. Hand Surg. Am. 33, 49–58 (2008).

    Article  PubMed  Google Scholar 

  27. Biniecka, M. et al. Oxidative damage in synovial tissue is associated with in vivo hypoxic status in the arthritic joint. Ann. Rheum. Dis. 69, 1172–1178 (2010).

    Article  PubMed  Google Scholar 

  28. Ng, C. T. et al. Synovial tissue hypoxia and inflammation in vivo. Ann. Rheum. Dis. 69, 1389–1395 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Hitchon, C. et al. Hypoxia-induced production of stromal cell-derived factor 1 (CXCL12) and vascular endothelial growth factor by synovial fibroblasts. Arthritis Rheum. 46, 2587–2597 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Hollander, A. P., Corke, K. P., Freemont, A. J. & Lewis, C. E. Expression of hypoxia-inducible factor 1α by macrophages in the rheumatoid synovium: implications for targeting of therapeutic genes to the inflamed joint. Arthritis Rheum. 44, 1540–1544 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Giatromanolaki, A. et al. Upregulated hypoxia inducible factor-1α and -2α pathway in rheumatoid arthritis and osteoarthritis. Arthritis Res. Ther. 5, R193–R201 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brouwer, E. et al. Hypoxia inducible factor-1-α (HIF-1α) is related to both angiogenesis and inflammation in rheumatoid arthritis. Clin. Exp. Rheumatol. 27, 945–951 (2009).

    CAS  PubMed  Google Scholar 

  33. Koch, A. E. et al. Vascular endothelial growth factor. A cytokine modulating endothelial function in rheumatoid arthritis. J. Immunol. 152, 4149–4156 (1994).

    CAS  PubMed  Google Scholar 

  34. Fava, R. A. et al. Vascular permeability factor/endothelial growth factor (VPF/VEGF): accumulation and expression in human synovial fluids and rheumatoid synovial tissue. J. Exp. Med. 180, 341–346 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Paleolog, E. M. et al. Modulation of angiogenic vascular endothelial growth factor by tumor necrosis factor α and interleukin-1 in rheumatoid arthritis. Arthritis Rheum. 41, 1258–1265 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Ballara, S. C. et al. Raised serum vascular endothelial growth factor levels are associated with destructive change in inflammatory arthritis. Arthritis Rheum. 44, 2055–2064 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Kurosaka, D. et al. Clinical significance of serum levels of vascular endothelial growth factor, angiopoietin-1, and angiopoietin-2 in patients with rheumatoid arthritis. J. Rheumatol. 37, 1121–1128 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Akhavani, M. A. et al. Hypoxia upregulates angiogenesis and synovial cell migration in rheumatoid arthritis. Arthritis Res. Ther. 11, R64 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Ahn, J. K. et al. Role of hypoxia-inducible factor-1α in hypoxia-induced expressions of IL-8, MMP-1 and MMP-3 in rheumatoid fibroblast-like synoviocytes. Rheumatology (Oxford) 47, 834–839 (2008).

    Article  CAS  Google Scholar 

  40. Bosco, M. C. et al. Hypoxic synovial environment and expression of macrophage inflammatory protein 3γ/CCL20 in juvenile idiopathic arthritis. Arthritis Rheum. 58, 1833–1838 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Del Rey, M. J. et al. Human inflammatory synovial fibroblasts induce enhanced myeloid cell recruitment and angiogenesis through a hypoxia-inducible transcription factor 1α/vascular endothelial growth factor-mediated pathway in immunodeficient mice. Arthritis Rheum. 60, 2926–2934 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Santiago, B. et al. CXCL12 gene expression is upregulated by hypoxia and growth arrest but not by inflammatory cytokines in rheumatoid synovial fibroblasts. Cytokine 53, 184–190 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Kennedy, A. et al. Angiogenesis and blood vessel stability in inflammatory arthritis. Arthritis Rheum. 62, 711–721 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Izquierdo, E. et al. Immature blood vessels in rheumatoid synovium are selectively depleted in response to anti-TNF therapy. PLoS ONE 4, e8131 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Kennedy, A. et al. Tumor necrosis factor blocking therapy alters joint inflammation and hypoxia. Arthritis Rheum. 63, 923–932 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Biniecka, M. et al. Hypoxia induces mitochondrial mutagenesis and dysfunction in inflammatory arthritis. Arthritis Rheum. 63, 2172–2182 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Eltzschig, H. K. & Carmeliet, P. Hypoxia and inflammation. N. Engl. J. Med. 364, 656–665 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Higashida, T., Kanno, H., Nakano, M., Funakoshi, K. & Yamamoto, I. Expression of hypoxia-inducible angiogenic proteins (hypoxia-inducible factor-1α, vascular endothelial growth factor, and E26 transformation-specific-1) and plaque hemorrhage in human carotid atherosclerosis. J. Neurosurg. 109, 83–91 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Giatromanolaki, A. et al. Hypoxia inducible factor 1α and 2α overexpression in inflammatory bowel disease. J. Clin. Pathol. 56, 209–213 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee, S. Y. et al. Expression of vascular endothelial growth factor and hypoxia-inducible factor in the airway of asthmatic patients. Ann. Allergy Asthma Immunol. 97, 794–799 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Tovar-Castillo, L. E. et al. Under-expression of VHL and over-expression of HDAC-1, HIF-1α, LL-37, and IAP-2 in affected skin biopsies of patients with psoriasis. Int. J. Dermatol. 46, 239–246 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Cramer, T. et al. HIF-1α is essential for myeloid cell-mediated inflammation. Cell 112, 645–657 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Peyssonnaux, C. et al. HIF-1α expression regulates the bactericidal capacity of phagocytes. J. Clin. Invest. 115, 1806–1815 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Thornton, R. D. et al. Interleukin 1 induces hypoxia-inducible factor 1 in human gingival and synovial fibroblasts. Biochem. J. 350, 307–312 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Westra, J. et al. Regulation of cytokine-induced HIF-1α expression in rheumatoid synovial fibroblasts. Ann. NY Acad. Sci. 1108, 340–348 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Frede, S., Stockmann, C., Freitag, P. & Fandrey, J. Bacterial lipopolysaccharide induces HIF-1 activation in human monocytes via p44/42 MAPK and NF-κB. Biochem. J. 396, 517–527 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Oda, S. et al. Macrophage migration inhibitory factor activates hypoxia-inducible factor in a p53-dependent manner. PLoS ONE 3, e2215 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Simmonds, R. E. & Foxwell, B. M. Signalling, inflammation and arthritis: NF-κB and its relevance to arthritis and inflammation. Rheumatology (Oxford) 47, 584–590 (2008).

    Article  CAS  Google Scholar 

  59. Taylor, C. T. Interdependent roles for hypoxia inducible factor and nuclear factor-κB in hypoxic inflammation. J. Physiol. 586, 4055–4059 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Oliver, K. M., Taylor, C. T. & Cummins, E. P. Hypoxia. Regulation of NFκB signalling during inflammation: the role of hydroxylases. Arthritis Res. Ther. 11, 215 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Walmsley, S. R. et al. Hypoxia-induced neutrophil survival is mediated by HIF-1α-dependent NF-κB activity. J. Exp. Med. 201, 105–115 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Koong, A. C., Chen, E. Y. & Giaccia, A. J. Hypoxia causes the activation of nuclear factor κB through the phosphorylation of IκBα on tyrosine residues. Cancer Res. 54, 1425–1430 (1994).

    CAS  PubMed  Google Scholar 

  63. Culver, C. et al. Mechanism of hypoxia-induced NF-κB. Mol. Cell. Biol. 30, 4901–4921 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cummins, E. P. et al. Prolyl hydroxylase-1 negatively regulates IκB kinase-β, giving insight into hypoxia-induced NFκB activity. Proc. Natl Acad. Sci. USA 103, 18154–18159 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fu, J. & Taubman, M. B. Prolyl hydroxylase EGLN3 regulates skeletal myoblast differentiation through an NF-κB-dependent pathway. J. Biol. Chem. 285, 8927–8935 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xue, J. et al. Prolyl hydroxylase-3 is down-regulated in colorectal cancer cells and inhibits IKKβ independent of hydroxylase activity. Gastroenterology 138, 606–615 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Ferguson, J. E. 3rd et al. ASB4 is a hydroxylation substrate of FIH and promotes vascular differentiation via an oxygen-dependent mechanism. Mol. Cell. Biol. 27, 6407–6419 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cockman, M. E. et al. Posttranslational hydroxylation of ankyrin repeats in IκB proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH). Proc. Natl Acad. Sci. USA 103, 14767–14772 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bonello, S. et al. Reactive oxygen species activate the HIF-1alpha promoter via a functional NFκB site. Arterioscler. Thromb. Vasc. Biol. 27, 755–761 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Rius, J. et al. NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature 453, 807–811 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nicholas, S. A. & Sumbayev, V. V. The involvement of hypoxia-inducible factor 1α in Toll-like receptor 7/8-mediated inflammatory response. Cell. Res. 19, 973–983 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Jantsch, J. et al. Toll-like receptor activation and hypoxia use distinct signaling pathways to stabilize hypoxia-inducible factor 1α (HIF1A) and result in differential HIF1A-dependent gene expression. J. Leukoc. Biol. 90, 551–562 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Peyssonnaux, C. et al. Cutting edge: Essential role of hypoxia inducible factor-1α in development of lipopolysaccharide-induced sepsis. J. Immunol. 178, 7516–7519 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Nicholas, S. A. & Sumbayev, V. V. The role of redox-dependent mechanisms in the downregulation of ligand-induced Toll-like receptors 7, 8 and 4-mediated HIF-1α prolyl hydroxylation. Immunol. Cell. Biol. 88, 180–186 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Caldwell, C. C. et al. Differential effects of physiologically relevant hypoxic conditions on T lymphocyte development and effector functions. J. Immunol. 167, 6140–6149 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Naldini, A., Carraro, F., Silvestri, S. & Bocci, V. Hypoxia affects cytokine production and proliferative responses by human peripheral mononuclear cells. J. Cell. Physiol. 173, 335–342 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Krieger, J. A., Landsiedel, J. C. & Lawrence, D. A. Differential in vitro effects of physiological and atmospheric oxygen tension on normal human peripheral blood mononuclear cell proliferation, cytokine and immunoglobulin production. Int. J. Immunopharmacol. 18, 545–552 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Makino, Y. et al. Hypoxia-inducible factor regulates survival of antigen receptor-driven T cells. J. Immunol. 171, 6534–6540 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Nakamura, H. et al. TCR engagement increases hypoxia-inducible factor-1α protein synthesis via rapamycin-sensitive pathway under hypoxic conditions in human peripheral T cells. J. Immunol. 174, 7592–7599 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Dang, E. V. et al. Control of TH17/TREG balance by hypoxia-inducible factor 1. Cell 146, 772–784 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shi, L. Z. et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and TREG cells. J. Exp. Med. 208, 1367–1376 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sica, A., Schioppa, T., Mantovani, A., Allavena, P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur. J. Cancer 42, 717–727 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Mantovani, A. et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25, 677–686 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Werno, C. et al. Knockout of HIF-1α in tumor-associated macrophages enhances M2 polarization and attenuates their pro-angiogenic responses. Carcinogenesis 31, 1863–1872 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Talks, K. L. et al. The expression and distribution of the hypoxia-inducible factors HIF-1α and HIF-2α in normal human tissues, cancers, and tumor-associated macrophages. Am. J. Pathol. 157, 411–421 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. White, J. R. et al. Genetic amplification of the transcriptional response to hypoxia as a novel means of identifying regulators of angiogenesis. Genomics 83, 1–8 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Imtiyaz, H. Z. et al. Hypoxia-inducible factor 2α regulates macrophage function in mouse models of acute and tumor inflammation. J. Clin. Invest. 120, 2699–2714 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Takeda, N. et al. Differential activation and antagonistic function of HIF-α isoforms in macrophages are essential for NO homeostasis. Genes Dev. 24, 491–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Burke, B. et al. Expression of HIF-1α by human macrophages: implications for the use of macrophages in hypoxia-regulated cancer gene therapy. J. Pathol. 196, 204–212 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Elbarghati, L., Murdoch, C. & Lewis, C. E. Effects of hypoxia on transcription factor expression in human monocytes and macrophages. Immunobiology 213, 899–908 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Fang, H. Y. et al. Hypoxia-inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia. Blood 114, 844–859 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Corzo, C. A. et al. HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J. Exp. Med. 207, 2439–2453 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Eubank, T. D., Roda, J. M., Liu, H., O'Neil, T. & Marsh, C. B. Opposing roles for HIF-1α and HIF-2α in the regulation of angiogenesis by mononuclear phagocytes. Blood 117, 323–332 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Doedens, A. L. et al. Macrophage expression of hypoxia-inducible factor-1α suppresses T-cell function and promotes tumor progression. Cancer Res. 70, 7465–7475 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Takahashi, N. et al. The molecular signature of oxidative metabolism and the mode of macrophage activation determine the shift from acute to chronic disease in experimental arthritis: critical role of interleukin-12p40. Arthritis Rheum. 58, 3471–3484 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Mecklenburgh, K. I. et al. Involvement of a ferroprotein sensor in hypoxia-mediated inhibition of neutrophil apoptosis. Blood 100, 3008–3016 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Vissers, M. C. & Wilkie, R. P. Ascorbate deficiency results in impaired neutrophil apoptosis and clearance and is associated with up-regulation of hypoxia-inducible factor 1α. J. Leukoc. Biol. 81, 1236–1244 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Mancino, A. et al. Divergent effects of hypoxia on dendritic cell functions. Blood 112, 3723–3734 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Kuhlicke, J., Frick, J. S., Morote-Garcia, J. C., Rosenberger, P. & Eltzschig, H. K. Hypoxia inducible factor (HIF)-1 coordinates induction of Toll-like receptors TLR2 and TLR6 during hypoxia. PLoS ONE 2, e1364 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Jantsch, J. et al. Hypoxia and hypoxia-inducible factor-1α modulate lipopolysaccharide-induced dendritic cell activation and function. J. Immunol. 180, 4697–4705 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335–2342 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Kabbinavar, F., Irl, C., Zurlo, A. & Hurwitz, H. Bevacizumab improves the overall and progression-free survival of patients with metastatic colorectal cancer treated with 5-fluorouracil-based regimens irrespective of baseline risk. Oncology 75, 215–223 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Lu, J. et al. Vascular endothelial growth factor expression and regulation of murine collagen-induced arthritis. J. Immunol. 164, 5922–5927 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Sone, H. et al. Neutralization of vascular endothelial growth factor prevents collagen-induced arthritis and ameliorates established disease in mice. Biochem. Biophys. Res. Commun. 281, 562–568 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Luttun, A. et al. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat. Med. 8, 831–840 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Afuwape, A. O., Feldmann, M. & Paleolog, E. M. Adenoviral delivery of soluble VEGF receptor 1 (sFlt-1) abrogates disease activity in murine collagen-induced arthritis. Gene Ther. 10, 1950–1960 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. de Bandt, M. et al. Blockade of vascular endothelial growth factor receptor I (VEGF-RI), but not VEGF-RII, suppresses joint destruction in the K/BxN model of rheumatoid arthritis. J. Immunol. 171, 4853–4859 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Scappaticci, F. A. et al. Arterial thromboembolic events in patients with metastatic carcinoma treated with chemotherapy and bevacizumab. J. Natl Cancer Inst. 99, 1232–1239 (2007).

    Article  PubMed  Google Scholar 

  109. Nadareishvili, Z., Michaud, K., Hallenbeck, J. M. & Wolfe, F. Cardiovascular, rheumatologic, and pharmacologic predictors of stroke in patients with rheumatoid arthritis: a nested, case–control study. Arthritis Rheum. 59, 1090–1096 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Solomon, D. H. et al. Cardiovascular morbidity and mortality in women diagnosed with rheumatoid arthritis. Circulation 107, 1303–1307 (2003).

    Article  PubMed  Google Scholar 

  111. Rapisarda, A. et al. Identification of small molecule inhibitors of hypoxia-inducible factor 1 transcriptional activation pathway. Cancer Res. 62, 4316–4324 (2002).

    CAS  PubMed  Google Scholar 

  112. Kummar, S. et al. Multihistology, target-driven pilot trial of oral topotecan as an inhibitor of hypoxia-inducible factor-1α (HIF-1α) in advanced solid tumors. Clin. Cancer Res. 17, 5123–5131 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. DeNiro, M., Al-Halafi, A., Al-Mohanna, F. H., Alsmadi, O. & Al-Mohanna, F. A. Pleiotropic effects of YC-1 selectively inhibit pathological retinal neovascularization and promote physiological revascularization in a mouse model of oxygen-induced retinopathy. Mol. Pharmacol. 77, 348–367 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Manabe, H. et al. Inhibition of histone deacetylase down-regulates the expression of hypoxia-induced vascular endothelial growth factor by rheumatoid synovial fibroblasts. Inflamm. Res. 57, 4–10 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Shankar, J., Thippegowda, P. B. & Kanum, S. A. Inhibition of HIF-1α activity by BP-1 ameliorates adjuvant induced arthritis in rats. Biochem. Biophys. Res. Commun. 387, 223–228 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Mazzone, M. et al. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136, 839–851 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Karhausen, J. et al. Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. J. Clin. Invest. 114, 1098–1106 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cummins, E. P. et al. The hydroxylase inhibitor dimethyloxalylglycine is protective in a murine model of colitis. Gastroenterology 134, 156–165 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Robinson, A. et al. Mucosal protection by hypoxia-inducible factor prolyl hydroxylase inhibition. Gastroenterology 134, 145–155 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Tambuwala, M. M. et al. Loss of prolyl hydroxylase-1 protects against colitis through reduced epithelial cell apoptosis and increased barrier function. Gastroenterology 139, 2093–2101 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Nagel, S. et al. Therapeutic manipulation of the HIF hydroxylases. Antioxid. Redox Signal 12, 481–501 (2010).

    Article  CAS  PubMed  Google Scholar 

  122. Safran, M. et al. Mouse model for noninvasive imaging of HIF prolyl hydroxylase activity: assessment of an oral agent that stimulates erythropoietin production. Proc. Natl Acad. Sci. USA 103, 105–110 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Ranpura, V., Hapani, S. & Wu, S. Treatment-related mortality with bevacizumab in cancer patients: a meta-analysis. JAMA 305, 487–494 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Ewa M. Paleolog.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konisti, S., Kiriakidis, S. & Paleolog, E. Hypoxia—a key regulator of angiogenesis and inflammation in rheumatoid arthritis. Nat Rev Rheumatol 8, 153–162 (2012). https://doi.org/10.1038/nrrheum.2011.205

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2011.205

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing