Skip to main content
Log in

On the correlation between T2 and tissue diffusion coefficients in exercised muscle: quantitative measurements at 3T within the tibialis anterior

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Purpose

To assess the transverse relaxation time T2 and diffusion coefficient D before and following exercise in the tibialis anterior muscle and determine whether T2 and D values were correlated.

Methods

Measurements of T2 and D were performed at 3 T within axial slices through the calf muscles of six healthy volunteers at 95 s intervals before and for 10–12 min after a dorsiflexion exercise to exhaustion.

Results

The mean ± standard deviation (SD) of T2 and D before exercise were 32 ± 1.55 ms and 1.52  ±  0.15 μm2/ms, and after exercise were 43 ± 2.5 ms and 1.72  ±  0.13 μm2/ms, respectively. The mean ± SD inter-individual recovery times of the % change in T2 and D after exercise were 7.9  ±  4.2 and 10.9 ± 7.0 min, respectively. The T2 and D values showed a significant correlation throughout the experiments (r 2  =  0.45).

Conclusions

The increase in T2 of skeletal muscle after exercise is correlated with the increase of the diffusion coefficient D and the recovery times appear similar, indicating that any model used to explain T2 increases with exercise must also account for increased diffusion coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fleckenstein JL, Canby RC, Parkey RW, Peshock DE (1988) Acute effects of exercise on MR imaging of skeletal muscle in normal volunteers. Am J Roentgenol 151: 231–237

    CAS  Google Scholar 

  2. Ploutz-Snyder LL, Nyren S, Cooper TG, Potchen EJ, Meyer RA (1997) Different effects of exercise and edema on T2 relaxation in skeletal muscle. Magn Reson Med 37: 676–682

    Article  PubMed  CAS  Google Scholar 

  3. Fisher MJ, Meyer RA, Adams GR, Foley JM, Potchen EJ (1990) Direct relationship between proton T2 and exercise intensity in skeletal muscle MR images. Invest Radiol 25: 480–485

    Article  PubMed  CAS  Google Scholar 

  4. Yue G, Alexander AL, Laidlaw DH, Gmitro AF, Ungar EC, Enoka RM (1994) Sensitivity of muscle proton spin–spin relaxation time as an index of muscle activation. J Appl Physiol 77: 84–92

    PubMed  CAS  Google Scholar 

  5. Saab G, Thompson RT, Marsh GD (2000) Effect of exercise on muscle transverse relaxation determined by MR imaging and in vivo relaxometry. J Appl Physiol 88: 226–233

    PubMed  CAS  Google Scholar 

  6. Cagnie B, Dickx N, Peeters I, Tuvtens J, Achten E, Cambier D, Danneels L (2008) The use of functional MRI to evaluate cervical flexor activity during different cervical flexion exercises. J Appl Physiol 104: 230–235

    Article  PubMed  Google Scholar 

  7. Kubota J, Ono T, Araki M, Torii S, Okuwaki T, Fukubayashi T (2007) Non-uniform changes in magnetic resonance measurements of semitendinosus muscle following intensive eccentric exercise. Eur J Appl Phsyiol 101: 713–720

    Article  Google Scholar 

  8. Serrao FV, Serrao PRMD, Foerster B, Tannus A, Pedro VM, Salvini TF (2007) Assessment of the quadriceps femoris muscle in women after injury induced by maximal eccentric isokinetic exercise with low angular speed. J Sports Sci Med 6: 106–116

    Google Scholar 

  9. Larsen RG, Ringgaard S, Overgaard K (2007) Localization and quantification of muscle damage by magnetic resonance imaging following step exercise in young women. Scan J Med Sci Sports 17: 76–83

    CAS  Google Scholar 

  10. Morvan D, Leroy-Willig A (1995) Simultaneous measurements of diffusion and transverse relaxation in exercising skeletal muscle. Magn Reson Imaging 13: 943–948

    Article  PubMed  CAS  Google Scholar 

  11. Morvan D (1995) In vivo measurement of diffusion and pseudo-diffusion in skeletal muscle at rest and after exercise. Magn Reson Imaging 13: 193–199

    Article  PubMed  CAS  Google Scholar 

  12. Ababneh Z, Beloeil H, Berde C, Gambarota G, Maier SE, Mulkern RV (2005) Biexponential parametrization of T2 and diffusion decay curves in a rat muscle edema model: Decay curve components and water compartments. Magn Reson Med 54: 524–531

    Article  PubMed  Google Scholar 

  13. Hardy PA, Yue G (1997) Measurement of magnetic resonance T2 for physiological experiments. J Appl Physiol 83: 904–911

    PubMed  CAS  Google Scholar 

  14. Damon BM, Gregory CD, Hall KL, Stark HJ, Gulani V, Dawson MJ (2002) Intracellular acidification and volume increases explain R2 decreases in exercising muscle. Magn Reson Med 47: 14–23

    Article  PubMed  CAS  Google Scholar 

  15. Damon BM, Hornberger JL, Wadington MC, Lansdown DA, Kent-Braun JA (2007) Dual gradient-echo MRI of post-contraction changes in skeletal muscle blood volume and oxygenation. Magn Reson Med 57: 670–679

    Article  PubMed  CAS  Google Scholar 

  16. Damon BM, Wadington MC, Hornberger JL, Lansdown DA (2007) Absolute and relative contributions of BOLD effects to the muscle functional MRI signal intensity time course: Effect of exercise intensity. Magn Reson Med 58: 335–345

    Article  PubMed  CAS  Google Scholar 

  17. Le Rumeur EC, De Certaines J, Toulouse P, Rochcongan P (1987) Water phases in rat striated muscles as determined by T2 proton NMR relaxation times. Magn Reson Imaging 5: 267–272

    Article  PubMed  CAS  Google Scholar 

  18. Fung BM, Puon PS (1981) Nuclear magnetic resonance transverse relaxation in muscle water. Biophys J 33: 27–38

    PubMed  CAS  Google Scholar 

  19. Hazlewood CF, Chang DC, Nichols BK, Woessner DE (1974) Nuclear magnetic resonance transverse relaxation times of water protons in skeletal muscle. Biophys J 14: 583–606

    Article  PubMed  CAS  Google Scholar 

  20. English AE, Joy MLG, Henkelman RM (1991) Pulsed NMR relaxometry of striated muscle fibers. Magn Reson Med 21: 264–281

    Article  PubMed  CAS  Google Scholar 

  21. Cole WC, LeBlanc AD, Jhingran SG (1993) The origin of biexponential T2 relaxation in muscle water. Magn Reson Med 28: 19–24

    Article  Google Scholar 

  22. Belton PS, Jackson RR, Packer KJ (1972) Pulsed NMR studies of water in striated muscle. I. Transverse nuclear spin relaxation times and freezing effects. Biochim Biophys Acta 286: 16–25

    PubMed  CAS  Google Scholar 

  23. Peemoeller H, Pintar MM (1979) Nuclear magnetic resonance multiwindow analysis of proton local fields and magnetization distribution in natural and deuterated mouse muscle. Biophys J 28: 339–356

    PubMed  CAS  Google Scholar 

  24. Meiboom S, Gill D (1958) Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum 29: 688–691

    Article  CAS  Google Scholar 

  25. Mulkern RV, Wong STS, Jakab P, Bleier AR, Sandor T, Jolesz FA (1990) CPMG imaging sequences for high field in vivo transverse relaxation studies. Magn Reson Med 16: 67–79

    Article  PubMed  CAS  Google Scholar 

  26. Mitsouras D, Mulkern RV, Rybicki FJ (2006) Strategies for inner volume 3D fast spin echo magnetic resonance imaging using nonselective refocusing radio frequency pulses. Med Phys 33: 173–186

    Article  PubMed  Google Scholar 

  27. Gudbjartsson H, Maier SE, Mulkern RV, Morocz IA, Patz S, Jolesz FA (1996) Line scan diffusion imaging. Magn Reson Med 36: 509–518

    Article  PubMed  CAS  Google Scholar 

  28. Majumdar S, Orphanoudakis SC, Gmitro AI, O’Donnell M, Gore JC (1986) Errors in the measurement of T2 using multiple-echo MRI techniques. I. Effects of radiofrequency pulse imperfections. Magn Reson Med 3: 562–574

    Article  PubMed  CAS  Google Scholar 

  29. Poon C, Henkelman RM (1992) T2 quantification for clinical applications. J Magn Reson Imag 2: 541–553

    Article  CAS  Google Scholar 

  30. Hennig J, Scheffler K (2000) Easy improvement of signal-to-noise in RARE-sequences with low refocusing flip angles. Rapid acquisition with relaxation enhancement. Magn Reson Med 44: 983–985

    Article  PubMed  CAS  Google Scholar 

  31. McDannold N, Szot Barnes A, Rybicki FJ, Oshio K, Chen NK, Hynynen K, Mulkern RV (2007) Temperature mapping consideration in breast with line scan echo planar spectroscopic imaging. Magn Reson Med 58: 1117–1123

    Article  PubMed  Google Scholar 

  32. Deux JF, Malzy P, Paragios N, Bassez G, Luciani A, Zerbib P, Roudot-Thoraval F, Vignaud A, Kobeiter (2008) Assessment of calf muscle contraction by diffusion tensor imaging. Eur Radiol. doi:10.1007/s00330-008-1012-z

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaid Q. Ababneh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ababneh, Z.Q., Ababneh, R., Maier, S.E. et al. On the correlation between T2 and tissue diffusion coefficients in exercised muscle: quantitative measurements at 3T within the tibialis anterior. Magn Reson Mater Phy 21, 273–278 (2008). https://doi.org/10.1007/s10334-008-0120-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-008-0120-8

Keywords

Navigation