Skip to main content

Advertisement

Log in

Exercise training improves function of circulating angiogenic cells in patients with chronic heart failure

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Alterations in circulating angiogenic cells (CAC) and endothelial progenitor cells (EPC), known to contribute to endothelial repair, could explain the reversal of endothelial function in response to exercise training. Moreover, training-induced vascular remodeling might affect the acute response of EPC and CAC following a single exercise bout. We studied the impact of exercise training on CAC function and numbers of CD34+/KDR+ EPC in patients with chronic heart failure (CHF) and we assessed the effect of acute exercise on CAC and EPC in sedentary and trained patients. Twenty-one sedentary CHF patients underwent 6-month exercise training and were compared to a non-trained control group (n = 17) and 10 healthy age-matched subjects. At baseline and follow-up, flow-mediated dilation was assessed and graded exercise testing (GXT) was performed. Before and immediately after GXT, CAC migratory capacity was assessed in vitro and circulating CD34+/KDR+ EPC were quantified using flow cytometry. At baseline, CAC migration was significantly impaired in sedentary CHF patients but normalized acutely after GXT. Training corrected endothelial dysfunction, which coincided with a 77% increase in CAC migration (P = 0.0001). Moreover, the GXT-induced improvement detected at baseline was no longer observed after training. Numbers of CD34+/KDR+ EPC increased following 6-month exercise training (P = 0.021), but were not affected by GXT, either prior or post-training. In conclusion, the present findings demonstrate for the first time that exercise training in CHF reverses CAC dysfunction and increases numbers of CD34+/KDR+ EPC, which is accompanied by improvement of peripheral endothelial function. The acute exercise-induced changes in CAC function wane with exercise training, suggesting that repetitive exercise bouts progressively lead to functional endothelial repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adams V, Lenk K, Linke A, Lenz D, Erbs S, Sandri M, Tarnok A, Gielen S, Emmrich F, Schuler G, Hambrecht R (2004) Increase of circulating endothelial progenitor cells in patients with coronary artery disease after exercise-induced ischemia. Arterioscler Thromb Vasc Biol 24:684–690

    Article  CAS  PubMed  Google Scholar 

  2. Balligand JL, Feron O, Dessy C (2009) eNOS activation by physical forces: from short-term regulation of contraction to chronic remodeling of cardiovascular tissues. Physiol Rev 89:481–534

    Article  CAS  PubMed  Google Scholar 

  3. Brehm M, Picard F, Ebner P, Turan G, Bolke E, Kostering M, Schuller P, Fleissner T, Ilousis D, Augusta K, Peiper M, Schannwell C, Strauer BE (2009) Effects of exercise training on mobilization and functional activity of blood-derived progenitor cells in patients with acute myocardial infarction. Eur J Med Res 14:393–405

    PubMed  Google Scholar 

  4. Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA, Deanfield J, Drexler H, Gerhard-Herman M, Herrington D, Vallance P, Vita J, Vogel R (2002) Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol 39:257–265

    Article  PubMed  Google Scholar 

  5. Dernbach E, Randriamboavonjy V, Fleming I, Zeiher AM, Dimmeler S, Urbich C (2008) Impaired interaction of platelets with endothelial progenitor cells in patients with cardiovascular risk factors. Basic Res Cardiol 103:572–581

    Article  PubMed  Google Scholar 

  6. Ennezat PV, Malendowicz SL, Testa M, Colombo PC, Cohen-Solal A, Evans T, LeJemtel TH (2001) Physical training in patients with chronic heart failure enhances the expression of genes encoding antioxidative enzymes. J Am Coll Cardiol 38:194–198

    Article  CAS  PubMed  Google Scholar 

  7. Friedrich EB, Werner C, Walenta K, Bohm M, Scheller B (2009) Role of extracellular signal-regulated kinase for endothelial progenitor cell dysfunction in coronary artery disease. Basic Res Cardiol 104:613–620

    Article  CAS  PubMed  Google Scholar 

  8. Geft D, Schwartzenberg S, Rogowsky O, Finkelstein A, Ablin J, Maysel-Auslender S, Wexler D, Keren G, George J (2008) Circulating apoptotic progenitor cells in patients with congestive heart failure. PLoS ONE 3:e3238

    Article  PubMed  Google Scholar 

  9. Green DJ, Maiorana A, O’Driscoll G, Taylor R (2004) Effect of exercise training on endothelium-derived nitric oxide function in humans. J Physiol 561:1–25

    Article  CAS  PubMed  Google Scholar 

  10. Hambrecht R, Adams V, Erbs S, Linke A, Krankel N, Shu Y, Baither Y, Gielen S, Thiele H, Gummert JF, Mohr FW, Schuler G (2003) Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation 107:3152–3158

    Article  CAS  PubMed  Google Scholar 

  11. Haram PM, Kemi OJ, Wisloff U (2008) Adaptation of endothelium to exercise training: insights from experimental studies. Front Biosci 13:336–346

    Article  CAS  PubMed  Google Scholar 

  12. Heeschen C, Lehmann R, Honold J, Assmus B, Aicher A, Walter DH, Martin H, Zeiher AM, Dimmeler S (2004) Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation 109:1615–1622

    Article  PubMed  Google Scholar 

  13. Heiss C, Keymel S, Niesler U, Ziemann J, Kelm M, Kalka C (2005) Impaired progenitor cell activity in age-related endothelial dysfunction. J Am Coll Cardiol 45:1441–1448

    Article  CAS  PubMed  Google Scholar 

  14. Keymel S, Kalka C, Rassaf T, Yeghiazarians Y, Kelm M, Heiss C (2008) Impaired endothelial progenitor cell function predicts age-dependent carotid intimal thickening. Basic Res Cardiol 103:582–586

    Article  PubMed  Google Scholar 

  15. Kissel CK, Lehmann R, Assmus B, Aicher A, Honold J, Fischer-Rasokat U, Heeschen C, Spyridopoulos I, Dimmeler S, Zeiher AM (2007) Selective functional exhaustion of hematopoietic progenitor cells in the bone marrow of patients with postinfarction heart failure. J Am Coll Cardiol 49:2341–2349

    Article  PubMed  Google Scholar 

  16. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18:1440–1463

    Article  PubMed  Google Scholar 

  17. Lauer T, Heiss C, Balzer J, Kehmeier E, Mangold S, Leyendecker T, Rottler J, Meyer C, Merx MW, Kelm M, Rassaf T (2008) Age-dependent endothelial dysfunction is associated with failure to increase plasma nitrite in response to exercise. Basic Res Cardiol 103:291–297

    Article  CAS  PubMed  Google Scholar 

  18. Laufs U, Werner N, Link A, Endres M, Wassmann S, Jurgens K, Miche E, Bohm M, Nickenig G (2004) Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation 109:220–226

    Article  CAS  PubMed  Google Scholar 

  19. Lee BC, Hsu HC, Tseng WY, Su MY, Chen SY, Wu YW, Chien KL, Chen MF (2009) Effect of cardiac rehabilitation on angiogenic cytokines in postinfarction patients. Heart 95:1012–1018

    Article  CAS  PubMed  Google Scholar 

  20. Rognmo O, Bjornstad TH, Kahrs C, Tjonna AE, Bye A, Haram PM, Stolen T, Slordahl SA, Wisloff U (2008) Endothelial function in highly endurance-trained men: effects of acute exercise. J Strength Cond Res 22:535–542

    PubMed  Google Scholar 

  21. Sandri M, Adams V, Gielen S, Linke A, Lenk K, Krankel N, Lenz D, Erbs S, Scheinert D, Mohr FW, Schuler G, Hambrecht R (2005) Effects of exercise and ischemia on mobilization and functional activation of blood-derived progenitor cells in patients with ischemic syndromes: results of 3 randomized studies. Circulation 111:3391–3399

    Article  PubMed  Google Scholar 

  22. Sarto P, Balducci E, Balconi G, Fiordaliso F, Merlo L, Tuzzato G, Pappagallo GL, Frigato N, Zanocco A, Forestieri C, Azzarello G, Mazzucco A, Valenti MT, Alborino F, Noventa D, Vinante O, Pascotto P, Sartore S, Dejana E, Latini R (2007) Effects of exercise training on endothelial progenitor cells in patients with chronic heart failure. J Card Fail 13:701–708

    Article  CAS  PubMed  Google Scholar 

  23. Sun C, Liang C, Ren Y, Zhen Y, He Z, Wang H, Tan H, Pan X, Wu Z (2009) Advanced glycation end products depress function of endothelial progenitor cells via p38 and ERK 1/2 mitogen-activated protein kinase pathways. Basic Res Cardiol 104:42–49

    Article  CAS  PubMed  Google Scholar 

  24. Suvorava T, Kojda G (2007) Prevention of transient endothelial dysfunction in acute exercise: a friendly fire? Thromb Haemost 97:331–333

    CAS  PubMed  Google Scholar 

  25. Theiss HD, David R, Engelmann MG, Barth A, Schotten K, Naebauer M, Reichart B, Steinbeck G, Franz WM (2007) Circulation of CD34+ progenitor cell populations in patients with idiopathic dilated and ischaemic cardiomyopathy (DCM and ICM). Eur Heart J 28:1258–1264

    Article  PubMed  Google Scholar 

  26. Thijssen DH, Vos JB, Verseyden C, van Zonneveld AJ, Smits P, Sweep FC, Hopman MT, de Boer HC (2006) Haematopoietic stem cells and endothelial progenitor cells in healthy men: effect of aging and training. Aging Cell 5:495–503

    Article  CAS  PubMed  Google Scholar 

  27. Tinken TM, Thijssen DH, Black MA, Cable NT, Green DJ (2008) Time course of change in vasodilator function and capacity in response to exercise training in humans. J Physiol 586:5003–5012

    Article  CAS  PubMed  Google Scholar 

  28. Valgimigli M, Rigolin GM, Fucili A, Porta MD, Soukhomovskaia O, Malagutti P, Bugli AM, Bragotti LZ, Francolini G, Mauro E, Castoldi G, Ferrari R (2004) CD34+ and endothelial progenitor cells in patients with various degrees of congestive heart failure. Circulation 110:1209–1212

    Article  CAS  PubMed  Google Scholar 

  29. Van Craenenbroeck EM, Beckers PJ, Possemiers NM, Wuyts K, Frederix G, Hoymans VY, Wuyts F, Paelinck BP, Vrints CJ, Conraads VM (2010) Exercise acutely reverses dysfunction of circulating angiogenic cells in chronic heart failure. Eur Heart J. doi:10.1093/eurheartj/ehq058

  30. Van Craenenbroeck EM, Vrints CJ, Haine SE, Vermeulen K, Goovaerts I, Van Tendeloo VF, Hoymans VY, Conraads VM (2008) A maximal exercise bout increases the number of circulating CD34+/KDR+ endothelial progenitor cells in healthy subjects. Relation with lipid profile. J Appl Physiol 104:1006–1013

    Article  PubMed  Google Scholar 

  31. Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, Zeiher AM, Dimmeler S (2001) Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 89:E1–E7

    Article  CAS  PubMed  Google Scholar 

  32. Wassmann S, Werner N, Czech T, Nickenig G (2006) Improvement of endothelial function by systemic transfusion of vascular progenitor cells. Circ Res 99:e74–e83

    Article  CAS  PubMed  Google Scholar 

  33. Yamaguchi J, Kusano KF, Masuo O, Kawamoto A, Silver M, Murasawa S, Bosch-Marce M, Masuda H, Losordo DW, Isner JM, Asahara T (2003) Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation 107:1322–1328

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by the University of Antwerp, the Fund for Scientific Research (FWO-Flanders) and the Institute for Science and Technology (IWT). EVC and PB are supported by FWO as PhD fellows and VC as a clinical Postdoctoral fellow. We acknowledge technical assistance from G. Frederix regarding cell culture, from J. Roeykens regarding exercise testing and from I. Goovaerts and G. Ennekens regarding endothelial function assessments.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emeline M. Van Craenenbroeck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Craenenbroeck, E.M., Hoymans, V.Y., Beckers, P.J. et al. Exercise training improves function of circulating angiogenic cells in patients with chronic heart failure. Basic Res Cardiol 105, 665–676 (2010). https://doi.org/10.1007/s00395-010-0105-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-010-0105-4

Keywords

Navigation