Skip to main content
Log in

Early changes in experimental osteoarthritis using the Pond-Nuki dog model: technical procedure and initial results of in vivo MR imaging

  • Musculoskeletal
  • Published:
European Radiology Aims and scope Submit manuscript

An Erratum to this article was published on 12 May 2005

Abstract

The purpose of this study was to prove the feasibility of combining in vivo MR imaging with the Pond-Nuki animal model for the evaluation of osteoarthritis. In an experimental study, 24 beagle dogs underwent transection of the anterior cruciate ligament of the left leg (modified Pond-Nuki model). The dogs were randomly assigned into four groups and examined by MRI after 6, 12, 24 and 48 weeks. MR imaging of both knees was performed under general anesthesia with the contralateral joint serving as control. In group 1 (6 weeks postoperatively), the first sign detected on MRI was subchondral bone marrow edema in the posteromedial tibia. After 12 weeks, erosion of the posteromedial tibial cartilage could be observed, followed by meniscus degeneration and osteophytosis after 24 and 48 weeks. The contralateral knee joint showed transient joint effusion, but no significant signs of internal derangement (P<0.001). By combining in vivo MR imaging with the Pond-Nuki model, it is possible to detect early signs of osteoarthritis. The first sign was posteromedial subchondral bone marrow edema in the tibia followed by progressive cartilage degeneration and joint derangement. The in vivo model therefore seems to be suitable for longitudinal studies or monitoring the therapeutic effects of osteoarthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adams ME, Billingham ME (1982) Animal models of degenerative joint disease. Curr Top Pathol 71:265–297

    CAS  PubMed  Google Scholar 

  2. Pond MJ, Nuki G (1973) Experimentally-induced osteoarthritis in the dog. Ann Rheum Dis 32:387–388

    CAS  PubMed  Google Scholar 

  3. Brandt KD, Braunstein EM, Visco DM, O’Connor B, Heck D, Albrecht M (1991) Anterior (cranial) cruciate ligament transection in the dog: a bona fide model of osteoarthritis, not merely of cartilage injury and repair. J Rheumatol 18:436–446

    CAS  PubMed  Google Scholar 

  4. Adams ME, Brandt KD (1991) Hypertrophic repair of canine articular cartilage in osteoarthritis after anterior cruciate ligament transection. J Rheumatol 18:428–435

    CAS  PubMed  Google Scholar 

  5. Burstein D, Bashir A, Gray ML (2000) MRI techniques in early stages of cartilage disease. Invest Radiol 35:622–638

    Google Scholar 

  6. Trattnig S, Mlynarik V, Huber M, Ba-Ssalamah A, Puig S, Imhof H (2000) Magnetic resonance imaging of articular cartilage and evaluation of cartilage disease. Invest Radiol 35:595–601

    Google Scholar 

  7. Imhof H, Nobauer-Huhmann IM, Krestan C et al (2002) MRI of the cartilage. Eur Radiol 12:2781–2793

    CAS  PubMed  Google Scholar 

  8. Guermazi A, Zaim S, Taouli B, Miaux Y, Peterfy CG, Genant HG (2003) MR findings in knee osteoarthritis. Eur Radiol 13:1370–1386

    Article  PubMed  Google Scholar 

  9. Van Breuseghem I (2004) Ultrastructural MR imaging techniques of the knee articular cartilage: problems for routine clinical application. Eur Radiol 14:184–192

    Article  PubMed  Google Scholar 

  10. Vande Berg BC, Lecouvet FE, Maldague B, Malghem J (2004) MR appearance of cartilage defects of the knee: preliminary results of a spiral CT arthrography-guided analysis. Eur Radiol 14:208–214

    Article  PubMed  Google Scholar 

  11. Gold GE, McCauley TR, Gray ML, Disler DG (2003) What’s new in cartilage? Radiographics 23:1227–1242

    PubMed  Google Scholar 

  12. Sonin AH, Pensy RA, Mulligan ME, Hatem S (2002) Grading articular cartilage of the knee using fast spin-echo proton density-weighted MR imaging without fat suppression. Am J Roentgenol 179:1159–1166

    PubMed  Google Scholar 

  13. Goodwin DW, Wadghiri YZ, Zhu H, Vinton CJ, Smith ED, Dunn JF (2004) Macroscopic structure of articular cartilage of the tibial plateau: influence of a characteristic matrix architecture on MRI appearance. Am J Roentgenol 182:311–318

    Google Scholar 

  14. Nakanishi K, Tanaka H, Sugano N et al (2001) MR-based three-dimensional presentation of cartilage thickness in the femoral head. Eur Radiol 11:2178–2183

    Article  CAS  PubMed  Google Scholar 

  15. Mohr A, Priebe M, Taouli B, Grimm J, Heller M, Brossmann J (2003) Selective water excitation for faster MR imaging of articular cartilage defects: initial clinical results. Eur Radiol 13:686–689

    CAS  PubMed  Google Scholar 

  16. Vande Berg BC, Lecouvet FE, Poilvache P et al (2002) Assessment of knee cartilage in cadavers with dual-detector spiral CT arthrography and MR imaging. Radiology 222:430–436

    PubMed  Google Scholar 

  17. McGibbon CA, Trahan CA (2003) Measurement accuracy of focal cartilage defects from MRI and correlation of MRI graded lesions with histology: a preliminary study. Osteoarthr Cartil 11:483–493

    Article  PubMed  Google Scholar 

  18. McDevitt C, Gilbertson E, Muir H (1977) An experimental model of osteoarthritis; early morphological and biochemical changes. J Bone Joint Surg Br 59:24–35

    CAS  PubMed  Google Scholar 

  19. Xia Y, Moody JB, Alhadlaq H, Hu J (2003) Imaging the physical and morphological properties of a multi-zone young articular cartilage at microscopic resolution. J Magn Reson Imaging 17:365–374

    Article  PubMed  Google Scholar 

  20. Wayne JS, Kraft KA, Shields KJ, Yin C, Owen JR, Disler DG (2003) MR imaging of normal and matrix-depleted cartilage: correlation with biomechanical function and biochemical composition. Radiology 228:493–499

    PubMed  Google Scholar 

  21. Regatte RR, Akella SV, Borthakur A, Reddy R (2003) Proton spin-lock ratio imaging for quantitation of glycosaminoglycans in articular cartilage. J Magn Reson Imaging 17:114–121

    Article  PubMed  Google Scholar 

  22. Trudel G, Himori K, Goudreau L, Uhthoff HK (2003) Measurement of articular cartilage surface irregularity in rat knee contracture. J Rheumatol 30:2218–2225

    PubMed  Google Scholar 

  23. Chandnani VP, Ho C, Chu P, Trudell D, Resnick D (1991) Knee hyaline cartilage evaluated with MR imaging: a cadaveric study involving multiple imaging sequences and intraarticular injection of gadolinium and saline solution. Radiology 178:557–561

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Libicher.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00330-005-2791-0

Rights and permissions

Reprints and permissions

About this article

Cite this article

Libicher, M., Ivancic, M., Hoffmann, V. et al. Early changes in experimental osteoarthritis using the Pond-Nuki dog model: technical procedure and initial results of in vivo MR imaging. Eur Radiol 15, 390–394 (2005). https://doi.org/10.1007/s00330-004-2486-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-004-2486-y

Keywords

Navigation