Skip to main content
Log in

MRI assessment of knee osteoarthritis: Knee Osteoarthritis Scoring System (KOSS)—inter-observer and intra-observer reproducibility of a compartment-based scoring system

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To develop a scoring system for quantifying osteoarthritic changes of the knee as identified by magnetic resonance (MR) imaging, and to determine its inter- and intra-observer reproducibility, in order to monitor medical therapy in research studies.

Design and patients

Two independent observers evaluated 25 consecutive MR examinations of the knee in patients with previously defined clinical symptoms and radiological signs of osteoarthritis. We acquired on a 1.5 T system: coronal and sagittal proton density- and T2-weighted dual spin echo (SE) images, sagittal three-dimensional T1-weighted gradient echo (GE) images with fat suppression, and axial dual turbo SE images with fat suppression. Images were scored for the presence of cartilaginous lesions, osteophytes, subchondral cysts, bone marrow edema, and for meniscal abnormalities. Presence and size of effusion, synovitis and Baker’s cyst were recorded. All parameters were ranked on a previously defined, semiquantitative scale, reflecting increasing severity of findings. Kappa, weighted kappa and intraclass correlation coefficient (ICC) were used to determine inter- and intra-observer variability.

Results

Inter-observer reproducibility was good (ICC value 0.77). Inter- and intra-observer reproducibility for individual parameters was good to very good (inter-observer ICC value 0.63–0.91; intra-observer ICC value 0.76–0.96).

Conclusion

The presented comprehensive MR scoring system for osteoarthritic changes of the knee has a good to very good inter-observer and intra-observer reproducibility. Thus the score form with its definitions can be used for standardized assessment of osteoarthritic changes to monitor medical therapy in research studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Felson DT, Naimark A, Anderson J, Kazis L, Castelli W, Meenan RF. The prevalence of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study. Arthritis Rheum 1987; 30:914–918.

    CAS  PubMed  Google Scholar 

  2. Recht M, Bobic V, Burstein D, et al. Magnetic resonance imaging of articular cartilage. Clin Orthop 2001; 391 (Suppl):S379–S396.

    Google Scholar 

  3. Peterfy CG, Genant HK. Emerging applications of magnetic resonance imaging in the evaluation of articular cartilage. Radiol Clin North Am 1996; 34:195–213, ix.

    CAS  PubMed  Google Scholar 

  4. Eckstein F, Reiser M, Englmeier KH, Putz R. In vivo morphometry and functional analysis of human articular cartilage with quantitative magnetic resonance imaging: from image to data, from data to theory. Anat Embryol (Berl) 2001; 203:147–173.

  5. Peterfy CG. Scratching the surface: articular cartilage disorders in the knee. Magn Reson Imaging Clin North Am 2000; 8:409–430.

    CAS  Google Scholar 

  6. McCauley TR, Kornaat PR, Jee WH. Central osteophytes in the knee: prevalence and association with cartilage defects on MR imaging. AJR Am J Roentgenol 2001; 176:359–364.

    CAS  PubMed  Google Scholar 

  7. Ostergaard M, Stoltenberg M, Henriksen O, Lorenzen I. The accuracy of MRI-determined synovial membrane and joint effusion volumes in arthritis. A comparison of pre- and post-aspiration volumes. Scand J Rheumatol 1995; 24:305–311.

    CAS  PubMed  Google Scholar 

  8. Ostergaard M, Stoltenberg M, Lovgreen-Nielsen P, Volck B, Jensen CH, Lorenzen I. Magnetic resonance imaging-determined synovial membrane and joint effusion volumes in rheumatoid arthritis and osteoarthritis: comparison with the macroscopic and microscopic appearance of the synovium. Arthritis Rheum 1997; 40:1856–1867.

    CAS  PubMed  Google Scholar 

  9. Vincken PW, ter Braak BP, van Erkell AR, et al. Effectiveness of MR imaging in selection of patients for arthroscopy of the knee. Radiology 2002; 223:739–746.

    PubMed  Google Scholar 

  10. Shahriaree H. Chondromalacia. Contemp Orthop 1985; 11:27–39.

    Google Scholar 

  11. Outerbridge RE. The etiology of chondromalacia patellae. Clin Orthop 2001; 389:5–8.

    PubMed  Google Scholar 

  12. Disler DG, McCauley TR, Kelman CG, et al. Fat-suppressed three-dimensional spoiled gradient-echo MR imaging of hyaline cartilage defects in the knee: comparison with standard MR imaging and arthroscopy. AJR Am J Roentgenol 1996; 167:127–132.

    CAS  PubMed  Google Scholar 

  13. Potter HG, Linklater JM, Allen AA, Hannafin JA, Haas SB. Magnetic resonance imaging of articular cartilage in the knee. An evaluation with use of fast-spin-echo imaging. J Bone Joint Surg Am 1998; 80:1276–1284.

    CAS  PubMed  Google Scholar 

  14. Boegard TL, Rudling O, Petersson IF, Jonsson K. Magnetic resonance imaging of the knee in chronic knee pain. A 2-year follow-up. Osteoarthritis Cartilage 2001; 9:473–480.

    Article  CAS  PubMed  Google Scholar 

  15. McNicholas MJ, Brooksbank AJ, Walker CM. Observer agreement analysis of MRI grading of knee osteoarthritis. J R Coll Surg Edinb 1999; 44:31–33.

    CAS  PubMed  Google Scholar 

  16. Biswal S, Hastie T, Andriacchi TP, Bergman GA, Dillingham MF, Lang P. Risk factors for progressive cartilage loss in the knee: a longitudinal magnetic resonance imaging study in forty-three patients. Arthritis Rheum 2002; 46:2884–2892.

    Article  PubMed  Google Scholar 

  17. Bredella MA, Tirman PF, Peterfy CG, et al. Accuracy of T2-weighted fast spin-echo MR imaging with fat saturation in detecting cartilage defects in the knee: comparison with arthroscopy in 130 patients. AJR Am J Roentgenol 1999; 172:1073–1080.

    CAS  PubMed  Google Scholar 

  18. Link TM, Steinbach LS, Ghosh S, et al. Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings. Radiology 2003; 226:373–381.

    PubMed  Google Scholar 

  19. Peterfy CG. Imaging of the disease process. Curr Opin Rheumatol 2002; 14:590–596.

    Google Scholar 

  20. Kellgren JH, Lawrence RC. Radiographic assessment of osteoarthritis. Ann Rheum Dis 1957; 16:494–502.

    CAS  PubMed  Google Scholar 

  21. Yulish BS, Montanez J, Goodfellow DB, Bryan PJ, Mulopulos GP, Modic MT. Chondromalacia patellae: assessment with MR imaging. Radiology 1987; 164:763–766.

    CAS  PubMed  Google Scholar 

  22. Mink JH, Deutsch AL. Occult cartilage and bone injuries of the knee: detection, classification, and assessment with MR imaging. Radiology 1989; 170:823–829.

    CAS  PubMed  Google Scholar 

  23. Stoller DW, Martin C, Crues JV, III, Kaplan L, Mink JH. Meniscal tears: pathologic correlation with MR imaging. Radiology 1987; 163:731–735.

    Google Scholar 

  24. Lewandrowski KU, Muller J, Schollmeier G. Concomitant meniscal and articular cartilage lesions in the femorotibial joint. Am J Sports Med 1997; 25:486–494.

    CAS  PubMed  Google Scholar 

  25. Altman DG. Practical statistics for medical research. London: Chapman & Hall, 1991.

  26. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977; 33:159–174.

    CAS  PubMed  Google Scholar 

  27. Armitage P, Berry G. Statistical methods in medical research, 3rd edn. Oxford: Blackwell Science, 1994.

  28. Wildy KS, Zaim S, Peterfy CG, Newman AB, Kritchevsky S, Nevitt M. Reliability of the Whole-Organ MRI Scoring (WORMS) Method for knee OA in a multi-center study. Arthritis Rheum 2001; 44 (Suppl 9):S155.

    Google Scholar 

  29. Sonin AH, Pensy RA, Mulligan ME, Hatem S. Grading articular cartilage of the knee using fast spin-echo proton density-weighted MR imaging without fat suppression. AJR Am J Roentgenol 2002; 179:1159–1166.

    PubMed  Google Scholar 

  30. Ostergaard M, Klarlund M, Lassere M, et al. Interreader agreement in the assessment of magnetic resonance images of rheumatoid arthritis wrist and finger joints: an international multicenter study. J Rheumatol 2001; 28:1143–1150.

    CAS  PubMed  Google Scholar 

  31. McCauley TR, Recht MP, Disler DG. Clinical imaging of articular cartilage in the knee. Semin Musculoskelet Radiol 2001; 5:293–304.

    Article  CAS  PubMed  Google Scholar 

  32. Recht MP, Resnick D. MR imaging of articular cartilage: current status and future directions. AJR Am J Roentgenol 1994; 163:283–290.

    CAS  PubMed  Google Scholar 

  33. Recht MP, Piraino DW, Paletta GA, Schils JP, Belhobek GH. Accuracy of fat-suppressed three-dimensional spoiled gradient-echo FLASH MR imaging in the detection of patellofemoral articular cartilage abnormalities. Radiology 1996; 198:209–212.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Pfizer Inc., Groton, Conn., USA provided generous support for this work. The authors would also like to acknowledge support of the cooperating hospitals and referring rheumatologists, orthopaedic surgeons and general practitioners in our region. We also wish to thank Annette van den Berg-Huysmans for her statistical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter R. Kornaat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kornaat, P.R., Ceulemans, R.Y.T., Kroon, H.M. et al. MRI assessment of knee osteoarthritis: Knee Osteoarthritis Scoring System (KOSS)—inter-observer and intra-observer reproducibility of a compartment-based scoring system. Skeletal Radiol 34, 95–102 (2005). https://doi.org/10.1007/s00256-004-0828-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-004-0828-0

Keywords

Navigation